Answer
Verified
431.7k+ views
Hint:We know that$\csc x = \dfrac{1}{{\sin x}}$. So first we need to find $\sin \left( {\dfrac{{11\pi }}{6}}
\right)$and then find its reciprocal.
We also know$\;\cos 2\theta = 1 - 2{\sin ^2}\theta $, this is one of the basic trigonometric identities.
In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity.
Complete step by step solution:
Given
$\csc \left( {\dfrac{{11\pi }}{6}} \right)...................................\left( i \right)$
Now we also know$\csc x = \dfrac{1}{{\sin x}}$. So to find the value of $\csc \left( {\dfrac{{11\pi }}{6}}
\right)$we need to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$and then find it’s reciprocal.
Now to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$we can use the identity$\;\cos 2\theta = 1 - 2{\sin
^2}\theta $.
Finding the value of$\sin \left( {\dfrac{{11\pi }}{6}} \right)$:
Now let’s assume $\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a......................\left( {ii} \right)$
So similarly we can write $\;\cos a = \cos \left( {\dfrac{{11\pi }}{6}} \right)$
$ \Rightarrow \cos 2a = \cos \left( {\dfrac{{22\pi }}{6}} \right)$
We have to find the value of $\cos \left( {\dfrac{{22\pi }}{6}} \right)$such that by using the identity we can then solve the question.
So finding the value of$\cos \left( {\dfrac{{22\pi }}{6}} \right)$:
We know that $\cos \left( {\dfrac{{22\pi }}{6}} \right)$can be written as
$
\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{6} - \dfrac{{2\pi }}{6}} \right) = \cos \left( {2\left( {2\pi }
\right) - \dfrac{{2\pi }}{6}} \right).................(iii) \\
\\
$
So from (iii) we know that \[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right)\]would be in
the IV Quadrant where cosine is positive.
Such that:
\[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{{2\pi }}{6}}
\right)..................(iv)\]
Also we know \[\cos \left( {\dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) =
\dfrac{1}{2}....................(v)\]
Now by using the identity $\;\cos 2\theta = 1 - 2{\sin ^2}\theta $we get
$
\Rightarrow \cos 2a = 1 - 2{\sin ^2}a = \dfrac{1}{2} \\
\Rightarrow 2{\sin ^2}a = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\Rightarrow {\sin ^2}a = \dfrac{1}{4} \\
$
Now from (ii) \[\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a\]
$
\Rightarrow \sin {\left( {\dfrac{{11\pi }}{6}} \right)^2} = \dfrac{1}{4} \\
\Rightarrow \sin \left( {\dfrac{{11\pi }}{6}} \right) = - \dfrac{1}{2} \\
$
Now we know that$\csc x = \dfrac{1}{{\sin x}}$, such that:
$\csc \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{11\pi }}{6}} \right)}} =
\dfrac{1}{{\left( { - \dfrac{1}{2}} \right)}} = - 2$
Therefore the value of$\csc \left( {\dfrac{{11\pi }}{6}} \right)\;{\text{is}}\; - 2$.
Note:
General things to be known for solving this question.
I Quadrant:$0\; - \;\dfrac{\pi }{2}$ All values are positive.
II Quadrant:$\dfrac{\pi }{2}\; - \;\pi $ Only Sine and Cosec values are positive.
III Quadrant:$\pi \; - \;\dfrac{{3\pi }}{2}$ Only Tan and Cot values are positive.
IV Quadrant:$\dfrac{{3\pi }}{2}\; - \;2\pi $ Only Cos and Sec values are positive.
Some other equations needed for solving these types of problem are:
\[
\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{
}}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1 \\
\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly.
\right)$and then find its reciprocal.
We also know$\;\cos 2\theta = 1 - 2{\sin ^2}\theta $, this is one of the basic trigonometric identities.
In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity.
Complete step by step solution:
Given
$\csc \left( {\dfrac{{11\pi }}{6}} \right)...................................\left( i \right)$
Now we also know$\csc x = \dfrac{1}{{\sin x}}$. So to find the value of $\csc \left( {\dfrac{{11\pi }}{6}}
\right)$we need to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$and then find it’s reciprocal.
Now to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$we can use the identity$\;\cos 2\theta = 1 - 2{\sin
^2}\theta $.
Finding the value of$\sin \left( {\dfrac{{11\pi }}{6}} \right)$:
Now let’s assume $\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a......................\left( {ii} \right)$
So similarly we can write $\;\cos a = \cos \left( {\dfrac{{11\pi }}{6}} \right)$
$ \Rightarrow \cos 2a = \cos \left( {\dfrac{{22\pi }}{6}} \right)$
We have to find the value of $\cos \left( {\dfrac{{22\pi }}{6}} \right)$such that by using the identity we can then solve the question.
So finding the value of$\cos \left( {\dfrac{{22\pi }}{6}} \right)$:
We know that $\cos \left( {\dfrac{{22\pi }}{6}} \right)$can be written as
$
\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{6} - \dfrac{{2\pi }}{6}} \right) = \cos \left( {2\left( {2\pi }
\right) - \dfrac{{2\pi }}{6}} \right).................(iii) \\
\\
$
So from (iii) we know that \[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right)\]would be in
the IV Quadrant where cosine is positive.
Such that:
\[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{{2\pi }}{6}}
\right)..................(iv)\]
Also we know \[\cos \left( {\dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) =
\dfrac{1}{2}....................(v)\]
Now by using the identity $\;\cos 2\theta = 1 - 2{\sin ^2}\theta $we get
$
\Rightarrow \cos 2a = 1 - 2{\sin ^2}a = \dfrac{1}{2} \\
\Rightarrow 2{\sin ^2}a = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\Rightarrow {\sin ^2}a = \dfrac{1}{4} \\
$
Now from (ii) \[\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a\]
$
\Rightarrow \sin {\left( {\dfrac{{11\pi }}{6}} \right)^2} = \dfrac{1}{4} \\
\Rightarrow \sin \left( {\dfrac{{11\pi }}{6}} \right) = - \dfrac{1}{2} \\
$
Now we know that$\csc x = \dfrac{1}{{\sin x}}$, such that:
$\csc \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{11\pi }}{6}} \right)}} =
\dfrac{1}{{\left( { - \dfrac{1}{2}} \right)}} = - 2$
Therefore the value of$\csc \left( {\dfrac{{11\pi }}{6}} \right)\;{\text{is}}\; - 2$.
Note:
General things to be known for solving this question.
I Quadrant:$0\; - \;\dfrac{\pi }{2}$ All values are positive.
II Quadrant:$\dfrac{\pi }{2}\; - \;\pi $ Only Sine and Cosec values are positive.
III Quadrant:$\pi \; - \;\dfrac{{3\pi }}{2}$ Only Tan and Cot values are positive.
IV Quadrant:$\dfrac{{3\pi }}{2}\; - \;2\pi $ Only Cos and Sec values are positive.
Some other equations needed for solving these types of problem are:
\[
\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{
}}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1 \\
\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE