Answer
Verified
498.3k+ views
Hint: Directly differentiate with respect to ‘x’ and remember the formula $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$.
Complete step-by-step answer:
The given expression is,
\[y=(1+{{x}^{2}}){{\tan }^{-1}}x\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ (1+{{x}^{2}}){{\tan }^{-1}}x \right]\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\dfrac{d}{dx}\left[ (1+{{x}^{2}}) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\left[\dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}+{{\tan }^{-1}}x\left[ \dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and derivative of a constant is always zero, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+1...........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
equation with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x+1\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x
\right)+\dfrac{d}{dx}\left( 1 \right)\]
Derivative of constant term is zero, so
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+0\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2x\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)+{{\tan }^{-1}}x\dfrac{d}{dx}(2x)\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2{{\tan }^{-1}}x+2x\cdot\dfrac{1}{1+{{x}^{2}}}\]
Taking the LCM, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2(1+{{x}^{2}}){{\tan }^{-1}}x+2x}{1+{{x}^{2}}}\]
But from the given expression we have, \[y=(1+{{x}^{2}}){{\tan }^{-1}}x\], substituting this value, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\left( y+x \right)}{1+{{x}^{2}}}\]
This is the required answer.
Note: In differentiation questions we should carefully observe the question ask for differentiation with respect to which variable, sometimes its with respect to $x$ and sometimes it is with respect to $'y'$ . As in both cases we will get different answers.
Complete step-by-step answer:
The given expression is,
\[y=(1+{{x}^{2}}){{\tan }^{-1}}x\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ (1+{{x}^{2}}){{\tan }^{-1}}x \right]\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\dfrac{d}{dx}\left[ (1+{{x}^{2}}) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\left[\dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}+{{\tan }^{-1}}x\left[ \dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and derivative of a constant is always zero, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+1...........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
equation with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x+1\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x
\right)+\dfrac{d}{dx}\left( 1 \right)\]
Derivative of constant term is zero, so
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+0\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2x\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)+{{\tan }^{-1}}x\dfrac{d}{dx}(2x)\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2{{\tan }^{-1}}x+2x\cdot\dfrac{1}{1+{{x}^{2}}}\]
Taking the LCM, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2(1+{{x}^{2}}){{\tan }^{-1}}x+2x}{1+{{x}^{2}}}\]
But from the given expression we have, \[y=(1+{{x}^{2}}){{\tan }^{-1}}x\], substituting this value, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\left( y+x \right)}{1+{{x}^{2}}}\]
This is the required answer.
Note: In differentiation questions we should carefully observe the question ask for differentiation with respect to which variable, sometimes its with respect to $x$ and sometimes it is with respect to $'y'$ . As in both cases we will get different answers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE