Answer
Verified
460.8k+ views
Hint:
To solve this question first divide the powers by 4 and then split all the powers of the terms in the form of multiplication with 4. E.g. ${i^{592}} = {i^{148 \times 4}}$ and if the power is not divisible by 4 then split the power in addition of remainder when divided by 4 and the quotient with multiplication of 4. E.g. ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Now, put the value of ${i^4} = 1$, ${i^2} = - 1$in the expression and solve the expression to get the answer.
Complete step by step solution:
First of all, let's see whose value we have to find?
We have to find the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ ……..(1)
To find the value of this, we have to simplify each term in numerator and denominator.
To simplify each term, we will first split the power of the terms by dividing their power with 4 and write it as multiple 4 plus remainder e.g. ${i^{592}} = {i^{148 \times 4}}$, here when we divide 592 with 4, we get 148 and the remainder is 0. So, 592 can be replaced with $148 \times 4$. Similarly, if we divide 590 by 4, we get 147 and the remainder gets 2. Hence, 590 can be replaced by $147 \times 4 + 2$ and we write the value of ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Similarly, we can write ${i^{588}} = {i^{147 \times 4}}$ , ${i^{586}} = {i^{146 \times 4 + 2}} = {i^{146 \times 4}}.{i^2}$ , ${i^{584}} = {i^{146 \times 4}}$, ${i^{582}} = {i^{145 \times 4 + 2}} = {i^{145 \times 4}}.{i^2}$, ${i^{580}} = {i^{145 \times 4}}$, ${i^{578}} = {i^{144 \times 4 + 2}} = {i^{144 \times 4}}.{i^2}$, ${i^{576}} = {i^{144 \times 4}}$, ${i^{574}} = {i^{143 \times 4 + 2}} = {i^{143 \times 4}}.{i^2}$.
Putting all these value in (1), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{i^{148 \times 4}} + {i^{147 \times 4}}.{i^2} + {i^{147 \times 4}} + {i^{146 \times 4}}.{i^2} + {i^{146 \times 4}}}}{{{i^{145 \times 4}}.{i^2} + {i^{145 \times 4}} + {i^{144 \times 4}}.{i^2} + {i^{144 \times 4}} + {i^{143 \times 4}}.{i^2}}} - 1\]
………..(2)
Now, write each term in double power as given:
$ \Rightarrow {x^{a \times b}} = {\left( {{x^a}} \right)^b} = {\left( {{x^b}} \right)^a}$
Apply this concept on all terms in equation (2), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( {{i^4}} \right)}^{148}} + {{\left( {{i^4}} \right)}^{147}}.{i^2} + {{\left( {{i^4}} \right)}^{147}} + {{\left( {{i^4}} \right)}^{146}}.{i^2} + {{\left( {{i^4}} \right)}^{146}}}}{{{{\left( {{i^4}} \right)}^{145}}.{i^2} + {{\left( {{i^4}} \right)}^{145}} + {{\left( {{i^4}} \right)}^{144}}.{i^2} + {{\left( {{i^4}} \right)}^{144}} + {{\left( {{i^4}} \right)}^{143}}.{i^2}}} - 1\] ………….…(3)
We know that of ${i^4} = 1$ and ${i^2} = - 1$, hence put these values in (3), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( 1 \right)}^{148}} + {{\left( 1 \right)}^{147}}.\left( { - 1} \right) + {{\left( 1 \right)}^{147}} + {{\left( 1 \right)}^{146}}.\left( { - 1} \right) + {{\left( 1 \right)}^{146}}}}{{{{\left( 1 \right)}^{145}}.\left( { - 1} \right) + {{\left( 1 \right)}^{145}} + {{\left( 1 \right)}^{144}}.\left( { - 1} \right) + {{\left( 1 \right)}^{144}} + {{\left( 1 \right)}^{143}}.\left( { - 1} \right)}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{1 - 1 + 1 - 1 + 1}}{{ - 1 + 1 - 1 + 1 - 1}} - 1\]By opening the bracket, we get,
By cancelling 1 with -1 from both numerator and denominator, we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{1}{{ - 1}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 1 - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 2\]
Hence, the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ is 2.
Note:
While solving this question students generally forget to put negative signs in ${i^2} = - 1$instead they put ${i^2} = 1$, which is wrong. It is noted that if the power of $i$ is even then the value of that numeric will be integer i.e. -1 or 1 but if the power of $i$ is odd then the value of that numeric will be a complex number i.e. $i$ or $ - i$. E.g.
1) ${i^{64}} = {i^{4 \times 16}} = 1$
2) ${i^{65}} = {i^{4 \times 16 + 1}} = {i^{4 \times 16}}.i = i$
3) ${i^{66}} = {i^{4 \times 16 + 2}} = {i^{4 \times 16}}.{i^2} = - 1$
4) ${i^{67}} = {i^{4 \times 16 + 3}} = {i^{4 \times 16}}.{i^3} = - i$
To solve this question first divide the powers by 4 and then split all the powers of the terms in the form of multiplication with 4. E.g. ${i^{592}} = {i^{148 \times 4}}$ and if the power is not divisible by 4 then split the power in addition of remainder when divided by 4 and the quotient with multiplication of 4. E.g. ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Now, put the value of ${i^4} = 1$, ${i^2} = - 1$in the expression and solve the expression to get the answer.
Complete step by step solution:
First of all, let's see whose value we have to find?
We have to find the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ ……..(1)
To find the value of this, we have to simplify each term in numerator and denominator.
To simplify each term, we will first split the power of the terms by dividing their power with 4 and write it as multiple 4 plus remainder e.g. ${i^{592}} = {i^{148 \times 4}}$, here when we divide 592 with 4, we get 148 and the remainder is 0. So, 592 can be replaced with $148 \times 4$. Similarly, if we divide 590 by 4, we get 147 and the remainder gets 2. Hence, 590 can be replaced by $147 \times 4 + 2$ and we write the value of ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Similarly, we can write ${i^{588}} = {i^{147 \times 4}}$ , ${i^{586}} = {i^{146 \times 4 + 2}} = {i^{146 \times 4}}.{i^2}$ , ${i^{584}} = {i^{146 \times 4}}$, ${i^{582}} = {i^{145 \times 4 + 2}} = {i^{145 \times 4}}.{i^2}$, ${i^{580}} = {i^{145 \times 4}}$, ${i^{578}} = {i^{144 \times 4 + 2}} = {i^{144 \times 4}}.{i^2}$, ${i^{576}} = {i^{144 \times 4}}$, ${i^{574}} = {i^{143 \times 4 + 2}} = {i^{143 \times 4}}.{i^2}$.
Putting all these value in (1), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{i^{148 \times 4}} + {i^{147 \times 4}}.{i^2} + {i^{147 \times 4}} + {i^{146 \times 4}}.{i^2} + {i^{146 \times 4}}}}{{{i^{145 \times 4}}.{i^2} + {i^{145 \times 4}} + {i^{144 \times 4}}.{i^2} + {i^{144 \times 4}} + {i^{143 \times 4}}.{i^2}}} - 1\]
………..(2)
Now, write each term in double power as given:
$ \Rightarrow {x^{a \times b}} = {\left( {{x^a}} \right)^b} = {\left( {{x^b}} \right)^a}$
Apply this concept on all terms in equation (2), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( {{i^4}} \right)}^{148}} + {{\left( {{i^4}} \right)}^{147}}.{i^2} + {{\left( {{i^4}} \right)}^{147}} + {{\left( {{i^4}} \right)}^{146}}.{i^2} + {{\left( {{i^4}} \right)}^{146}}}}{{{{\left( {{i^4}} \right)}^{145}}.{i^2} + {{\left( {{i^4}} \right)}^{145}} + {{\left( {{i^4}} \right)}^{144}}.{i^2} + {{\left( {{i^4}} \right)}^{144}} + {{\left( {{i^4}} \right)}^{143}}.{i^2}}} - 1\] ………….…(3)
We know that of ${i^4} = 1$ and ${i^2} = - 1$, hence put these values in (3), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( 1 \right)}^{148}} + {{\left( 1 \right)}^{147}}.\left( { - 1} \right) + {{\left( 1 \right)}^{147}} + {{\left( 1 \right)}^{146}}.\left( { - 1} \right) + {{\left( 1 \right)}^{146}}}}{{{{\left( 1 \right)}^{145}}.\left( { - 1} \right) + {{\left( 1 \right)}^{145}} + {{\left( 1 \right)}^{144}}.\left( { - 1} \right) + {{\left( 1 \right)}^{144}} + {{\left( 1 \right)}^{143}}.\left( { - 1} \right)}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{1 - 1 + 1 - 1 + 1}}{{ - 1 + 1 - 1 + 1 - 1}} - 1\]By opening the bracket, we get,
By cancelling 1 with -1 from both numerator and denominator, we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{1}{{ - 1}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 1 - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 2\]
Hence, the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ is 2.
Note:
While solving this question students generally forget to put negative signs in ${i^2} = - 1$instead they put ${i^2} = 1$, which is wrong. It is noted that if the power of $i$ is even then the value of that numeric will be integer i.e. -1 or 1 but if the power of $i$ is odd then the value of that numeric will be a complex number i.e. $i$ or $ - i$. E.g.
1) ${i^{64}} = {i^{4 \times 16}} = 1$
2) ${i^{65}} = {i^{4 \times 16 + 1}} = {i^{4 \times 16}}.i = i$
3) ${i^{66}} = {i^{4 \times 16 + 2}} = {i^{4 \times 16}}.{i^2} = - 1$
4) ${i^{67}} = {i^{4 \times 16 + 3}} = {i^{4 \times 16}}.{i^3} = - i$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE