
Find the value of following limit :
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Answer
522.6k+ views
Hint: Try expanding the series and then observing the terms individually.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
