
Find the value of f(x), If $\int {\dfrac{{dx}}{{{x^3}{{(1 + {x^6})}^{\dfrac{2}{3}}}}} = f(x){{(1 + {x^{ - 6}})}^{\dfrac{1}{3}}} + C} $ where C is a constant of integration.
A) $ - \dfrac{1}{2}$
B) $ - \dfrac{1}{6}$
C) $ - \dfrac{6}{x}$
D) $ - \dfrac{x}{2}$
Answer
583.5k+ views
Hint: Here the problem is based on integration with an unknown constant and a function on x which could be easily found by appropriate simplification and introducing needed terms. For that we must know some basic integral and differential formulas which are:
$\dfrac{d}{{dx}}{x^n} = n.{x^{n - 1}}$ and
$\dfrac{d}{{dx}}{(f(x))^n} = n.{(f(x))^{n - 1}}.f'(x)$
Complete step by step answer:
Step 1: Given $\int {\dfrac{{dx}}{{{x^3}{{(1 + {x^6})}^{\dfrac{2}{3}}}}} = f(x){{(1 + {x^{ - 6}})}^{\dfrac{1}{3}}} + C} $ ………………….(1)
The term which looks almost similar on LHS and RHS of equation (1) is ${(1 + {x^6})^{\dfrac{2}{3}}}$ on LHS and ${(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$ on RHS. So
Let us name $t = {(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$ . Then if we take its derivative with respect to the variable x we get,
$\Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{3}{(1 + {x^{ - 6}})^{\dfrac{1}{3} - 1}}.( - 6{x^{ - 6 - 1}})$
$ = \dfrac{1}{3}{(1 + {x^{ - 6}})^{ - \dfrac{2}{3}}}.( - 6{x^{ - 7}})$
$ = ( - 2){(1 + {x^{ - 6}})^{ - \dfrac{2}{3}}}{x^{ - 7}}$ ………………….(2)
Step 2: Rearranging equation (2) to make it similar to equation (1), we get
$\Rightarrow ( - \dfrac{1}{2})dt = \dfrac{{dx}}{{{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}{x^7}}}$ …………….(3)
RHS of obtained form is similar to the denominator of LHS in equation (1) with a difference in the power of x.
Step 3: Thus let us see whether we can make it similar or not.
We have ${x^3}{(1 + {x^6})^{\dfrac{2}{3}}} = {x^3}{x^4}{(1 + {x^{ - 6}})^{\dfrac{2}{3}}}$
$ = {x^7}{(1 + {x^{ - 6}})^{\dfrac{2}{3}}}$
Thus equation 1 changes to,
$\Rightarrow \int {\dfrac{{dx}}{{{x^7}{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}}} = f(x){{(1 + {x^{ - 6}})}^{\dfrac{1}{3}}} + C} $ ………………….(4)
Step 4: Substituting equation (3) in LHS of equation (4), we get
\[\Rightarrow \int {\dfrac{{dx}}{{{x^7}{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}}} = \int { - \dfrac{1}{2}dt = - \dfrac{1}{2}t + C} } \] where $t = {(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$
Thus comparing with Equation (1), we have $f(x) = - \dfrac{1}{2}$ which is option A.
Therefore, option (A) is correct. $f(x) = - \dfrac{1}{2}$
Note:
In such problem solving we use integration by substitution which is used only when the derivative of RHS is present in the integrand part on LHS. In this method we substitute the RHS term under consideration as a single variable and take its derivative and substitute it in the LHS and solve. Similarly there are various other integration methods like Integration by parts which is given by the formula,
$\int {f(x).g(x)dx = f(x).\int {g(x) - \int {(f'(x)\int {g(x)dx)} } } } $ where f(x) and g(x) are two single variable functions.
$\dfrac{d}{{dx}}{x^n} = n.{x^{n - 1}}$ and
$\dfrac{d}{{dx}}{(f(x))^n} = n.{(f(x))^{n - 1}}.f'(x)$
Complete step by step answer:
Step 1: Given $\int {\dfrac{{dx}}{{{x^3}{{(1 + {x^6})}^{\dfrac{2}{3}}}}} = f(x){{(1 + {x^{ - 6}})}^{\dfrac{1}{3}}} + C} $ ………………….(1)
The term which looks almost similar on LHS and RHS of equation (1) is ${(1 + {x^6})^{\dfrac{2}{3}}}$ on LHS and ${(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$ on RHS. So
Let us name $t = {(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$ . Then if we take its derivative with respect to the variable x we get,
$\Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{3}{(1 + {x^{ - 6}})^{\dfrac{1}{3} - 1}}.( - 6{x^{ - 6 - 1}})$
$ = \dfrac{1}{3}{(1 + {x^{ - 6}})^{ - \dfrac{2}{3}}}.( - 6{x^{ - 7}})$
$ = ( - 2){(1 + {x^{ - 6}})^{ - \dfrac{2}{3}}}{x^{ - 7}}$ ………………….(2)
Step 2: Rearranging equation (2) to make it similar to equation (1), we get
$\Rightarrow ( - \dfrac{1}{2})dt = \dfrac{{dx}}{{{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}{x^7}}}$ …………….(3)
RHS of obtained form is similar to the denominator of LHS in equation (1) with a difference in the power of x.
Step 3: Thus let us see whether we can make it similar or not.
We have ${x^3}{(1 + {x^6})^{\dfrac{2}{3}}} = {x^3}{x^4}{(1 + {x^{ - 6}})^{\dfrac{2}{3}}}$
$ = {x^7}{(1 + {x^{ - 6}})^{\dfrac{2}{3}}}$
Thus equation 1 changes to,
$\Rightarrow \int {\dfrac{{dx}}{{{x^7}{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}}} = f(x){{(1 + {x^{ - 6}})}^{\dfrac{1}{3}}} + C} $ ………………….(4)
Step 4: Substituting equation (3) in LHS of equation (4), we get
\[\Rightarrow \int {\dfrac{{dx}}{{{x^7}{{(1 + {x^{ - 6}})}^{\dfrac{2}{3}}}}} = \int { - \dfrac{1}{2}dt = - \dfrac{1}{2}t + C} } \] where $t = {(1 + {x^{ - 6}})^{\dfrac{1}{3}}}$
Thus comparing with Equation (1), we have $f(x) = - \dfrac{1}{2}$ which is option A.
Therefore, option (A) is correct. $f(x) = - \dfrac{1}{2}$
Note:
In such problem solving we use integration by substitution which is used only when the derivative of RHS is present in the integrand part on LHS. In this method we substitute the RHS term under consideration as a single variable and take its derivative and substitute it in the LHS and solve. Similarly there are various other integration methods like Integration by parts which is given by the formula,
$\int {f(x).g(x)dx = f(x).\int {g(x) - \int {(f'(x)\int {g(x)dx)} } } } $ where f(x) and g(x) are two single variable functions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

What is Saheb looking for in the garbage dump Where class 12 english CBSE

Ketones react with MgHg over water and give A Alcohols class 12 chemistry CBSE

