Answer
Verified
395.1k+ views
Hint:In order to answer this question we should first know about the \[1^{st}\] order reaction and half life of a reaction. The relation between half life and first order reaction is \[{{t}_{\dfrac{1}{2}}} = \dfrac{0.693}{k}\].
Complete step-by-step solution:
When rate of reaction is directly dependent on the concentration of a single reactant the phenomena is as First order reaction. On the other hand, the amount of time taken for the concentration of a reaction to reach half of its initial concentration is called the Half life reaction. From the integrated form of first order reaction we get, \[\left[ A \right] = \left[ A \right]0{{e}^{-kt}}\]
Now when the time \[t={{t}_{\dfrac{1}{2}}}\], [ Half life \[= {{t}_{\dfrac{1}{2}}}\]]
Here, \[\left[ A \right]\] is concentration of reaction and \[\left[ A \right]0\] is the initial concentration
Now by substituting \[\left[ A \right]\] with \[\dfrac{\left[ A \right]0}{2}\] and \[t\] with \[{{t}_{\dfrac{1}{2}}}\], in the integration form of first order reaction we get,
\[\Rightarrow \dfrac{\left[ A \right]0}{2}=\left[ A \right]0{{e}^{-k{{t}_{\dfrac{1}{2}}}}}\]
\[\Rightarrow \dfrac{1}{2}={{e}^{-k{{t}_{\dfrac{1}{2}}}}}\]
By eliminate “e” from the above equation we get-
\[\Rightarrow \ln \left( \dfrac{1}{2} \right)=-kt\dfrac{1}{2}\]
\[\therefore t\dfrac{1}{2}=\dfrac{0.693}{k}\]
Therefore option (C) is the right answer.
Note: For zero order reaction half life will be \[{{t}_{\dfrac{1}{2}}}=\dfrac{\left[ R \right]0}{2k}\] . Unit of \[\left[ R \right]0\] is \[[mol.{{L}^{-1}}]\] that is the initial reactant concentration .
Complete step-by-step solution:
When rate of reaction is directly dependent on the concentration of a single reactant the phenomena is as First order reaction. On the other hand, the amount of time taken for the concentration of a reaction to reach half of its initial concentration is called the Half life reaction. From the integrated form of first order reaction we get, \[\left[ A \right] = \left[ A \right]0{{e}^{-kt}}\]
Now when the time \[t={{t}_{\dfrac{1}{2}}}\], [ Half life \[= {{t}_{\dfrac{1}{2}}}\]]
Here, \[\left[ A \right]\] is concentration of reaction and \[\left[ A \right]0\] is the initial concentration
Now by substituting \[\left[ A \right]\] with \[\dfrac{\left[ A \right]0}{2}\] and \[t\] with \[{{t}_{\dfrac{1}{2}}}\], in the integration form of first order reaction we get,
\[\Rightarrow \dfrac{\left[ A \right]0}{2}=\left[ A \right]0{{e}^{-k{{t}_{\dfrac{1}{2}}}}}\]
\[\Rightarrow \dfrac{1}{2}={{e}^{-k{{t}_{\dfrac{1}{2}}}}}\]
By eliminate “e” from the above equation we get-
\[\Rightarrow \ln \left( \dfrac{1}{2} \right)=-kt\dfrac{1}{2}\]
\[\therefore t\dfrac{1}{2}=\dfrac{0.693}{k}\]
Therefore option (C) is the right answer.
Note: For zero order reaction half life will be \[{{t}_{\dfrac{1}{2}}}=\dfrac{\left[ R \right]0}{2k}\] . Unit of \[\left[ R \right]0\] is \[[mol.{{L}^{-1}}]\] that is the initial reactant concentration .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE