Answer
Verified
498.3k+ views
Hint: We need to have a basic idea of solving the system of equations in three variables to solve this problem. Use the determinant of a matrix to solve this problem.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
Recently Updated Pages
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Lemon juice normally has a pH of 2 If all the acid class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE