Find the value of k for which the simultaneous equation x + y + z = 3; x + 2y + 3z = 4 and x + 4y + kz = 6 will not have a unique solution.
A.0
B.5
C.6
D.7
Answer
Verified
507.3k+ views
Hint: We need to have a basic idea of solving the system of equations in three variables to solve this problem. Use the determinant of a matrix to solve this problem.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE