Answer
Verified
429.3k+ views
Hint: Consider a curve defined by a function $y=f\left( x \right)$ passing through the vertical axis. At a point, $x=0$ the curve cuts the axis. If we substitute the value $x=0$ in the given function $y=f\left( x \right)$, we will get the output y at which the curve cuts the vertical axis. This is the general procedure for finding the coordinates of the particular point.
Complete Step by Step Solution:
It is given that when the variable x is not equal to zero, the function $f\left( x \right)$ is equal to
$\Rightarrow f\left( x \right)=\dfrac{1-\cos 2x}{1-\cos x}$
The above equation cannot give the output value at $x=0$ because the value of $\cos {{0}^{\circ }}$ is equal to 1.
$\Rightarrow f\left( x \right)=\dfrac{1-\cos 2x}{1-\cos {{0}^{\circ }}}=\dfrac{1-\cos 2x}{1-1}=\infty $
We can get very close to zero $\left( x\to 0 \right)$ on both sides of the axis to find the closest value we can arrive at. In the left-hand side limit (LHL), we are approaching from a negative value to zero $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,$. Similarly, we are approaching from the positive side to zero $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,$in the right-hand side limit (RHL).
Let us assume that the left hand and the right-hand limits are equal at $x=0$.
$\Rightarrow LHL=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=k$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\cos 2x}{1-\cos x}$
We know the trigonometric identity $1-\cos 2x=2{{\sin }^{2}}x$ . Substitute them in the above equation.
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2{{\sin }^{2}}x}{1-\cos x}$
From the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( 1-{{\cos }^{2}}x \right)}{1-\cos x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( {{1}^{2}}-{{\cos }^{2}}x \right)}{1-\cos x}$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( 1+\cos x \right)\left( 1-\cos x \right)}{1-\cos x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,2\left( 1+\cos x \right)$
The given function is continuous, therefore at the point $x=0$
$\Rightarrow RHL=2\left( 1+\cos {{0}^{\circ }} \right)=2\left( 1+1 \right)$
$\Rightarrow RHL=4$
Equating the left-hand and right-hand limits, we get
$\Rightarrow k=4$
Note:
Sometimes, the function may be non-continuous and it will break at the point where it cuts the axis. In other words, the curve will break at the point where it meets the axis and it will be away from the point where the curve starts to progress on the other side of the axis. Therefore the function will give two different outputs when given an input equal to zero.
Complete Step by Step Solution:
It is given that when the variable x is not equal to zero, the function $f\left( x \right)$ is equal to
$\Rightarrow f\left( x \right)=\dfrac{1-\cos 2x}{1-\cos x}$
The above equation cannot give the output value at $x=0$ because the value of $\cos {{0}^{\circ }}$ is equal to 1.
$\Rightarrow f\left( x \right)=\dfrac{1-\cos 2x}{1-\cos {{0}^{\circ }}}=\dfrac{1-\cos 2x}{1-1}=\infty $
We can get very close to zero $\left( x\to 0 \right)$ on both sides of the axis to find the closest value we can arrive at. In the left-hand side limit (LHL), we are approaching from a negative value to zero $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,$. Similarly, we are approaching from the positive side to zero $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,$in the right-hand side limit (RHL).
Let us assume that the left hand and the right-hand limits are equal at $x=0$.
$\Rightarrow LHL=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=k$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\cos 2x}{1-\cos x}$
We know the trigonometric identity $1-\cos 2x=2{{\sin }^{2}}x$ . Substitute them in the above equation.
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2{{\sin }^{2}}x}{1-\cos x}$
From the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( 1-{{\cos }^{2}}x \right)}{1-\cos x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( {{1}^{2}}-{{\cos }^{2}}x \right)}{1-\cos x}$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
$\Rightarrow RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2\left( 1+\cos x \right)\left( 1-\cos x \right)}{1-\cos x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,2\left( 1+\cos x \right)$
The given function is continuous, therefore at the point $x=0$
$\Rightarrow RHL=2\left( 1+\cos {{0}^{\circ }} \right)=2\left( 1+1 \right)$
$\Rightarrow RHL=4$
Equating the left-hand and right-hand limits, we get
$\Rightarrow k=4$
Note:
Sometimes, the function may be non-continuous and it will break at the point where it cuts the axis. In other words, the curve will break at the point where it meets the axis and it will be away from the point where the curve starts to progress on the other side of the axis. Therefore the function will give two different outputs when given an input equal to zero.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers