Answer
Verified
496.5k+ views
Hint: For solving this question, we should know the basics of the condition of collinearity. Further, for three points to be collinear, they should all lie on the same straight line. Thus, we would write a line equation through two points and satisfy the third point in the equation of line to get the value of k.
Complete step by step solution:
For solving the above given problem related to collinearity, we first start by writing the line equation through (6, -2) and (-3,4), since these two points are known. Line equation through two points $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is given by –
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Thus, substituting the values, we get,
$y-(-2)=\dfrac{4-(-2)}{-3-6}(x-6)$
$y+2=\dfrac{6}{-9}(x-6)$
$y+2=-\dfrac{2}{3}(x-6)$ -- (1)
Now, for (k,3), (6, -2) and (-3,4) to be collinear, they should all lie on the same straight line. Now, we have written the line equation through points (6, -2) and (-3,4), we need to make sure that (k,3) should also satisfy this equation for the collinearity condition to hold true. Thus, we put (k,3) in place of (x,y) in equation (1).
$y+2=-\dfrac{2}{3}(x-6)$
$3+2=-\dfrac{2}{3}(k-6)$
$5=-\dfrac{2}{3}(k-6)$
-15 = 2k – 12
2k = -15+12
2k = -3
k =$-\dfrac{3}{2}$=-1.5
Hence, the value of k for points (k,3), (6, -2) and (-3,4) to be collinear is -1.5.
Note: We can also solve the same question by using the principle that slope between (k,3) and (6, -2), and (6, -2) and (-3,4) to be the same. The formula of slope between points $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$, is given by $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. Thus, equating the slopes, we get –
$\dfrac{4-(-2)}{-3-6}$=$\dfrac{-2-3}{6-k}$
$\dfrac{6}{-9}$=$\dfrac{-5}{6-k}$
6(6-k) = 45
36-6k = 45
6k = -9
k = -1.5
Thus, we get the same answer from both the answers.
Complete step by step solution:
For solving the above given problem related to collinearity, we first start by writing the line equation through (6, -2) and (-3,4), since these two points are known. Line equation through two points $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is given by –
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Thus, substituting the values, we get,
$y-(-2)=\dfrac{4-(-2)}{-3-6}(x-6)$
$y+2=\dfrac{6}{-9}(x-6)$
$y+2=-\dfrac{2}{3}(x-6)$ -- (1)
Now, for (k,3), (6, -2) and (-3,4) to be collinear, they should all lie on the same straight line. Now, we have written the line equation through points (6, -2) and (-3,4), we need to make sure that (k,3) should also satisfy this equation for the collinearity condition to hold true. Thus, we put (k,3) in place of (x,y) in equation (1).
$y+2=-\dfrac{2}{3}(x-6)$
$3+2=-\dfrac{2}{3}(k-6)$
$5=-\dfrac{2}{3}(k-6)$
-15 = 2k – 12
2k = -15+12
2k = -3
k =$-\dfrac{3}{2}$=-1.5
Hence, the value of k for points (k,3), (6, -2) and (-3,4) to be collinear is -1.5.
Note: We can also solve the same question by using the principle that slope between (k,3) and (6, -2), and (6, -2) and (-3,4) to be the same. The formula of slope between points $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$, is given by $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. Thus, equating the slopes, we get –
$\dfrac{4-(-2)}{-3-6}$=$\dfrac{-2-3}{6-k}$
$\dfrac{6}{-9}$=$\dfrac{-5}{6-k}$
6(6-k) = 45
36-6k = 45
6k = -9
k = -1.5
Thus, we get the same answer from both the answers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE