Answer
Verified
498.6k+ views
Hint: Write the given expression on LHS as \[\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\]. Use the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and then use the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] with $\theta ={{20}^{\circ }}$. This gives the value of the expression on LHS, and a linear equation in k. Solve the linear equation to find the value of k.
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE