
Find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $ , if $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Answer
521.1k+ views
Hint: First we have to define the terms we need to solve the problem.
Given that $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Therefore,
$ {\omega ^3} = 1 $
Use the identity,
$ 1 + \omega + {\omega ^2} = 0 $
Therefore,
$ 1 + \omega = - {\omega ^2} $
$ 1 + {\omega ^2} = - \omega $
Formula Used:
$ {\omega ^3} = 1 $
$ 1 + \omega + {\omega ^2} = 0 $
Complete step by step answer:
We need to find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
To find the required value let us solve the above equation,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
Let us rearrange the terms in the bracket,
$ = {\left( {1 + {\omega ^2} - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + {\omega ^2} = - \omega $ in first bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + \omega = - {\omega ^2} $ in second bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in first bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in second bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the first bracket we get,
$ = - 32{\omega ^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the second bracket we get,
$ = - 32{\omega ^5} - 32{\omega ^{10}} $
On taking \[ - 32{\omega ^5}\] from the both brackets we get,
\[ = - 32{\omega ^5}(1 + {\omega ^2})\]
On substituting value of $ 1 + {\omega ^2} = - \omega $ in the bracket we get,
\[ = - 32{\omega ^5} \times ( - \omega )\]
On performing the multiplication of both terms we get,
\[ = 32{\omega ^6}\]
On rearranging the terms we get,
\[ = 32 \times {({\omega ^3})^2}\]
On substituting value of $ {\omega ^3} = 1 $ in the bracket we get,
\[ = 32 \times {(1)^2}\]
On performing the multiplication of both terms we get,
\[ = 32\]
This is the required value.
Therefore,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} = 32 $
Note: Any number when raised to power $ 3 $ or multiplied itself thrice, if given an answer as $ 1 $ , then such number is called the cube root of unity. Complex cube root is usually denoted by $ \omega $ . Complex cube roots of unity are imaginary cube roots of unity. One imaginary cube root of unity is the square of another imaginary cube root of unity i.e. one imaginary cube root of unity is $ \omega $ and other is $ {\omega ^2} $ .
Given that $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Therefore,
$ {\omega ^3} = 1 $
Use the identity,
$ 1 + \omega + {\omega ^2} = 0 $
Therefore,
$ 1 + \omega = - {\omega ^2} $
$ 1 + {\omega ^2} = - \omega $
Formula Used:
$ {\omega ^3} = 1 $
$ 1 + \omega + {\omega ^2} = 0 $
Complete step by step answer:
We need to find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
To find the required value let us solve the above equation,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
Let us rearrange the terms in the bracket,
$ = {\left( {1 + {\omega ^2} - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + {\omega ^2} = - \omega $ in first bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + \omega = - {\omega ^2} $ in second bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in first bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in second bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the first bracket we get,
$ = - 32{\omega ^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the second bracket we get,
$ = - 32{\omega ^5} - 32{\omega ^{10}} $
On taking \[ - 32{\omega ^5}\] from the both brackets we get,
\[ = - 32{\omega ^5}(1 + {\omega ^2})\]
On substituting value of $ 1 + {\omega ^2} = - \omega $ in the bracket we get,
\[ = - 32{\omega ^5} \times ( - \omega )\]
On performing the multiplication of both terms we get,
\[ = 32{\omega ^6}\]
On rearranging the terms we get,
\[ = 32 \times {({\omega ^3})^2}\]
On substituting value of $ {\omega ^3} = 1 $ in the bracket we get,
\[ = 32 \times {(1)^2}\]
On performing the multiplication of both terms we get,
\[ = 32\]
This is the required value.
Therefore,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} = 32 $
Note: Any number when raised to power $ 3 $ or multiplied itself thrice, if given an answer as $ 1 $ , then such number is called the cube root of unity. Complex cube root is usually denoted by $ \omega $ . Complex cube roots of unity are imaginary cube roots of unity. One imaginary cube root of unity is the square of another imaginary cube root of unity i.e. one imaginary cube root of unity is $ \omega $ and other is $ {\omega ^2} $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

