Answer
Verified
442.2k+ views
Hint: First, we will find the value of the product by multiplying two terms, and then multiplying the results with the third term to get the required value of the expression. The product of 2 negatives is always positive. The product of a negative number and a positive number is always negative.
Complete step-by-step solution:
Multiplication is the repeated addition of equal groups. It helps in adding multiple equal groups quickly. It is denoted by the symbol $ \times $. Brackets may also be used to denote multiplication.
Now, we will find the product $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ by multiplying two terms at once.
First, let us multiply $ - 18$ by $ - 5$.
The integer $ - 18$ is the product of the numbers $ - 1$ and $18$.
The integer $ - 5$ is the product of the numbers $ - 1$ and $5$.
Therefore, rewriting the expression $ - 18 \times - 5$, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1 \times 18} \right) \times \left( { - 1 \times 5} \right)$
Open the brackets,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1} \right) \times 18 \times \left( { - 1} \right) \times 5$
Rearranging the terms, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1} \right) \times \left( { - 1} \right) \times 5 \times 18$
We know that the product of $ - 1$ and $ - 1$ is the square of $ - 1$, that is 1.
Therefore, by multiplying the terms in the expression, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = 1 \times 90$
Simplify the term,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = 90$
Now, let us multiply $90$ by $ - 4$.
The integer $ - 4$ is the product of the numbers $ - 1$ and $4$.
Therefore, rewriting the expression $90 \times - 4$, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = 90 \times \left( { - 1 \times 4} \right)$
Open the brackets,
$ \Rightarrow 90 \times \left( { - 4} \right) = 90 \times \left( { - 1} \right) \times 4$
Rearranging the terms, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = \left( { - 1} \right) \times 4 \times 90$
Therefore, by multiplying the terms in the expression, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = \left( { - 1} \right) \times 360$
We know that the product of $ - 1$ with any number will give a negative of that number.
$\therefore 90 \times \left( { - 4} \right) = - 360$
Hence, the product of $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ is $ - 360$.
Note: We can also use exponents to simplify the given expression.
The integer $ - 18$ is the product of the numbers $ - 1$ and $18$, $ - 5$ is the product of the numbers $ - 1$ and $5$ and $ - 4$ is the product of the numbers $ - 1$ and $4$.
Rewriting the given expression, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = \left( { - 1} \right) \times 18 \times \left( { - 1} \right) \times 5 \times \left( { - 1} \right) \times 4$
Therefore, by rewriting the expression using exponents, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = {\left( { - 1} \right)^3} \times 18 \times 5 \times 4$
We know that ${\left( { - 1} \right)^n}$ is equal to 1 if $n$ is an even natural number and is equal to $ - 1$ if $n$ is an odd natural number.
Simplifying the equation,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = \left( { - 1} \right) \times 18 \times 5 \times 4$
Multiplying the terms of the expression, we get
$\therefore \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = - 360$
Hence, the product of $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ is $ - 360$.
Complete step-by-step solution:
Multiplication is the repeated addition of equal groups. It helps in adding multiple equal groups quickly. It is denoted by the symbol $ \times $. Brackets may also be used to denote multiplication.
Now, we will find the product $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ by multiplying two terms at once.
First, let us multiply $ - 18$ by $ - 5$.
The integer $ - 18$ is the product of the numbers $ - 1$ and $18$.
The integer $ - 5$ is the product of the numbers $ - 1$ and $5$.
Therefore, rewriting the expression $ - 18 \times - 5$, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1 \times 18} \right) \times \left( { - 1 \times 5} \right)$
Open the brackets,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1} \right) \times 18 \times \left( { - 1} \right) \times 5$
Rearranging the terms, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = \left( { - 1} \right) \times \left( { - 1} \right) \times 5 \times 18$
We know that the product of $ - 1$ and $ - 1$ is the square of $ - 1$, that is 1.
Therefore, by multiplying the terms in the expression, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = 1 \times 90$
Simplify the term,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) = 90$
Now, let us multiply $90$ by $ - 4$.
The integer $ - 4$ is the product of the numbers $ - 1$ and $4$.
Therefore, rewriting the expression $90 \times - 4$, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = 90 \times \left( { - 1 \times 4} \right)$
Open the brackets,
$ \Rightarrow 90 \times \left( { - 4} \right) = 90 \times \left( { - 1} \right) \times 4$
Rearranging the terms, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = \left( { - 1} \right) \times 4 \times 90$
Therefore, by multiplying the terms in the expression, we get
$ \Rightarrow 90 \times \left( { - 4} \right) = \left( { - 1} \right) \times 360$
We know that the product of $ - 1$ with any number will give a negative of that number.
$\therefore 90 \times \left( { - 4} \right) = - 360$
Hence, the product of $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ is $ - 360$.
Note: We can also use exponents to simplify the given expression.
The integer $ - 18$ is the product of the numbers $ - 1$ and $18$, $ - 5$ is the product of the numbers $ - 1$ and $5$ and $ - 4$ is the product of the numbers $ - 1$ and $4$.
Rewriting the given expression, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = \left( { - 1} \right) \times 18 \times \left( { - 1} \right) \times 5 \times \left( { - 1} \right) \times 4$
Therefore, by rewriting the expression using exponents, we get
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = {\left( { - 1} \right)^3} \times 18 \times 5 \times 4$
We know that ${\left( { - 1} \right)^n}$ is equal to 1 if $n$ is an even natural number and is equal to $ - 1$ if $n$ is an odd natural number.
Simplifying the equation,
$ \Rightarrow \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = \left( { - 1} \right) \times 18 \times 5 \times 4$
Multiplying the terms of the expression, we get
$\therefore \left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right) = - 360$
Hence, the product of $\left( { - 18} \right) \times \left( { - 5} \right) \times \left( { - 4} \right)$ is $ - 360$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE