Answer
Verified
460.8k+ views
Hint: Here, use the basic formula of the difference of two squares and the property of the splitting of the powers using the multiplicative identity. Also, use the fundamental of the squares and square roots which cancels each other.
Complete step-by-step answer:
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}\] ………….. (a)
Simplify using the formula the difference of two squares –
${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$
\[\begin{align}
\Rightarrow & {{\left( {{61}^{2}}-{{11}^{2}} \right)}^{{}}}=(61-11)(61+11) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=(50)(72) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=3600\,\text{ }..........\text{(b)} \\
\end{align}\](Simplify)
Place the value of equation (b) in the equation (a) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{(3600)}^{\dfrac{3}{2}}}\] …………..(c)
Simplify, using the basic mathematical operations –
Split the power –
$\Rightarrow$ $\dfrac{3}{2}=\left( \dfrac{1}{2} \right)\times 3$
Place the above value in the equation (c) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{(3600)}^{\dfrac{1}{2}}} \right]}^{3}}\]
Simplify the left hand side of the equation –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{({{60}^{2}})}^{\dfrac{1}{2}}} \right]}^{3}}\]
By the property – the squares and square-root cancels each other –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ (60) \right]}^{3}}\]
Now, simplify the left hand side of the equation and do the cubes of six and ten -
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Therefore, the required solution is \[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Note: The square root of the number “n” is the number when multiplied by the number itself and equals to “n”. For example, the square root of $\sqrt{9}=\sqrt{{{3}^{2}}}=3$. The squares and the square roots are opposite to each other and so cancel each other. Perfect square number is the square of an integer, simply it is the product of the same integer with itself. For example - $\text{16 = 4 }\times \text{ 4, 16=}{{\text{4}}^{2}}$, generally it is denoted by n to the power two i.e. ${{n}^{2}}$. The perfect square is the number which can be expressed as the product of the two equal integers. For example: $9$, it can be expressed as the product of equal integers. $9=3\times 3$. Cube is the number, we get when the number is multiplied three times. For example - ${{n}^{3}}=n\times n\times n$
${{3}^{3}}=3\times 3\times 3,\ \text{implies }{{3}^{3}}=27$
Complete step-by-step answer:
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}\] ………….. (a)
Simplify using the formula the difference of two squares –
${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$
\[\begin{align}
\Rightarrow & {{\left( {{61}^{2}}-{{11}^{2}} \right)}^{{}}}=(61-11)(61+11) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=(50)(72) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=3600\,\text{ }..........\text{(b)} \\
\end{align}\](Simplify)
Place the value of equation (b) in the equation (a) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{(3600)}^{\dfrac{3}{2}}}\] …………..(c)
Simplify, using the basic mathematical operations –
Split the power –
$\Rightarrow$ $\dfrac{3}{2}=\left( \dfrac{1}{2} \right)\times 3$
Place the above value in the equation (c) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{(3600)}^{\dfrac{1}{2}}} \right]}^{3}}\]
Simplify the left hand side of the equation –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{({{60}^{2}})}^{\dfrac{1}{2}}} \right]}^{3}}\]
By the property – the squares and square-root cancels each other –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ (60) \right]}^{3}}\]
Now, simplify the left hand side of the equation and do the cubes of six and ten -
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Therefore, the required solution is \[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Note: The square root of the number “n” is the number when multiplied by the number itself and equals to “n”. For example, the square root of $\sqrt{9}=\sqrt{{{3}^{2}}}=3$. The squares and the square roots are opposite to each other and so cancel each other. Perfect square number is the square of an integer, simply it is the product of the same integer with itself. For example - $\text{16 = 4 }\times \text{ 4, 16=}{{\text{4}}^{2}}$, generally it is denoted by n to the power two i.e. ${{n}^{2}}$. The perfect square is the number which can be expressed as the product of the two equal integers. For example: $9$, it can be expressed as the product of equal integers. $9=3\times 3$. Cube is the number, we get when the number is multiplied three times. For example - ${{n}^{3}}=n\times n\times n$
${{3}^{3}}=3\times 3\times 3,\ \text{implies }{{3}^{3}}=27$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE