
Find the value of $\left( {\cot {9^ \circ } - \cot {{27}^ \circ } - \cot {{63}^ \circ } + \cot {{81}^ \circ }} \right)$:
(A) 4
(B) 0
(C) 3
(D) None of these
Answer
620.1k+ views
Hint: Use $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to convert the complete expression in $\sin \theta $ and $\cos \theta $. And then use standard results to find the final value.
Complete step-by-step answer:
The given expression is $\left( {\cot {9^ \circ } - \cot {{27}^ \circ } - \cot {{63}^ \circ } + \cot {{81}^ \circ }} \right)$. Let its value is $x$. Then we have:
$x = \left( {\cot {9^ \circ } - \cot {{27}^ \circ } - \cot {{63}^ \circ } + \cot {{81}^ \circ }} \right)$
Now, we know that $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $. Using this, we have $\cot {81^ \circ } = \tan {9^ \circ }$ and $\cot {63^ \circ } = \tan {27^ \circ }$. Putting these values, we’ll get:
$
\Rightarrow x = \cot {9^ \circ } - \cot {27^ \circ } - \tan {27^ \circ } + \tan {9^ \circ }, \\
\Rightarrow x = \tan {9^ \circ } + \cot {9^ \circ } - \left( {\tan {{27}^ \circ } + \cot {{27}^ \circ }} \right) \\
$
Using $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, we’ll get:
$
\Rightarrow x = \dfrac{{\sin {9^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}} - \left( {\dfrac{{\sin {{27}^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}}} \right), \\
\Rightarrow x = \dfrac{{{{\sin }^2}{9^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {9^ \circ }\cos {9^ \circ }}} - \left( {\dfrac{{{{\sin }^2}{{27}^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}} \right), \\
\Rightarrow x = \dfrac{1}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{1}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}, \\
\Rightarrow x = \dfrac{2}{{2\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{2}{{2\sin {{27}^ \circ }\cos {{27}^ \circ }}} \\
\ $
We know that $2\sin \theta \cos \theta = \sin 2\theta $.Using this we’ll get:
$ \Rightarrow x = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\sin {{54}^ \circ }}}$
If we use $\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta $, we’ll get $\sin {54^ \circ } = \cos {36^ \circ }$. Putting this we’ll get:
$ \Rightarrow x = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\cos {{36}^ \circ }}}$
We know that $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$ and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$. Putting these values, we have:
$
\Rightarrow x = \dfrac{2}{{\dfrac{{\sqrt 5 - 1}}{4}}} - \dfrac{2}{{\dfrac{{\sqrt 5 + 1}}{4}}}, \\
\Rightarrow x = \dfrac{8}{{\sqrt 5 - 1}} - \dfrac{8}{{\sqrt 5 + 1}}, \\
\Rightarrow x = 8\left( {\dfrac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}} \right), \\
\Rightarrow x = 8 \times \dfrac{2}{4}, \\
\Rightarrow x = 4 \\
$
Thus, the value of the expression is 4. (A) is the correct option.
Note: If in $\sin \theta $ or $\cos \theta $, $\theta $ is a multiple of 6, we can determine the values using formulae such as:
$
\sin 2\theta = 2\sin \theta \cos \theta , \\
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, \\
\sin ({90^ \circ } - \theta ) = \cos \theta \\
$
Complete step-by-step answer:
The given expression is $\left( {\cot {9^ \circ } - \cot {{27}^ \circ } - \cot {{63}^ \circ } + \cot {{81}^ \circ }} \right)$. Let its value is $x$. Then we have:
$x = \left( {\cot {9^ \circ } - \cot {{27}^ \circ } - \cot {{63}^ \circ } + \cot {{81}^ \circ }} \right)$
Now, we know that $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $. Using this, we have $\cot {81^ \circ } = \tan {9^ \circ }$ and $\cot {63^ \circ } = \tan {27^ \circ }$. Putting these values, we’ll get:
$
\Rightarrow x = \cot {9^ \circ } - \cot {27^ \circ } - \tan {27^ \circ } + \tan {9^ \circ }, \\
\Rightarrow x = \tan {9^ \circ } + \cot {9^ \circ } - \left( {\tan {{27}^ \circ } + \cot {{27}^ \circ }} \right) \\
$
Using $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, we’ll get:
$
\Rightarrow x = \dfrac{{\sin {9^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}} - \left( {\dfrac{{\sin {{27}^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}}} \right), \\
\Rightarrow x = \dfrac{{{{\sin }^2}{9^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {9^ \circ }\cos {9^ \circ }}} - \left( {\dfrac{{{{\sin }^2}{{27}^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}} \right), \\
\Rightarrow x = \dfrac{1}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{1}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}, \\
\Rightarrow x = \dfrac{2}{{2\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{2}{{2\sin {{27}^ \circ }\cos {{27}^ \circ }}} \\
\ $
We know that $2\sin \theta \cos \theta = \sin 2\theta $.Using this we’ll get:
$ \Rightarrow x = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\sin {{54}^ \circ }}}$
If we use $\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta $, we’ll get $\sin {54^ \circ } = \cos {36^ \circ }$. Putting this we’ll get:
$ \Rightarrow x = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\cos {{36}^ \circ }}}$
We know that $\sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}$ and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$. Putting these values, we have:
$
\Rightarrow x = \dfrac{2}{{\dfrac{{\sqrt 5 - 1}}{4}}} - \dfrac{2}{{\dfrac{{\sqrt 5 + 1}}{4}}}, \\
\Rightarrow x = \dfrac{8}{{\sqrt 5 - 1}} - \dfrac{8}{{\sqrt 5 + 1}}, \\
\Rightarrow x = 8\left( {\dfrac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}} \right), \\
\Rightarrow x = 8 \times \dfrac{2}{4}, \\
\Rightarrow x = 4 \\
$
Thus, the value of the expression is 4. (A) is the correct option.
Note: If in $\sin \theta $ or $\cos \theta $, $\theta $ is a multiple of 6, we can determine the values using formulae such as:
$
\sin 2\theta = 2\sin \theta \cos \theta , \\
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, \\
\sin ({90^ \circ } - \theta ) = \cos \theta \\
$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

