Answer
Verified
431.4k+ views
Hint: We know that the expansion of a function $y = \ln x$ is $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $ for all $x > \dfrac{1}{2}$. Substitute $x = 3$ in the above given expansion and simplify the expression to write the value of $\ln 3$ using series expansion. But we have to calculate the value of $\log 3$. So, we should convert $\log 3$ into $\ln 3$. Then, applying this formula we get the required value of $\log 3$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE