Find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\].
Answer
Verified
448.8k+ views
Hint: Here, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\]. If we take the limit $x \to 1$ we get $\dfrac{0}{0}$ which is an indeterminate form, so its limit can be calculated by the “L’HOPITAL’S” rule. Firstly, differentiate the numerator and denominator with respect to $x$ then find the limit $x \to 1$.
Complete step-by-step solution:
Given, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\].
By taking the limit $x \to 1$ of $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ we get $\dfrac{0}{0}$ which is an indeterminate form.
Here, we have to apply the “L’HOPITAL’S” rule. According to which we have to differentiate the numerator and differentiate the denominator with respect to $x$. So, by differentiating we can write \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] as
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( { - \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}}} \right)}}{{ - \left( { - \dfrac{2}{3}{x^{ - \dfrac{2}{3} - 1}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}}}{{\dfrac{2}{3}{x^{\dfrac{{ - 5}}{3}}}}}
$
Now, by taking limit $x \to 1$ we get
$ \Rightarrow \dfrac{{\dfrac{1}{3}\left( 1 \right)}}{{\dfrac{2}{3}\left( 1 \right)}} = \dfrac{1}{2}$
Thus, the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] is $\dfrac{1}{2}$.
Note: L’HOPITL’S Rule:
If $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}$ or $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{\infty }{\infty }$, then $\mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}$ is the required result.
So, this rule tells us that if we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ which is an indeterminate form then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit $x \to a$which gives the required result.
Alternate method:
This can be solved by simply arranging the terms of the numerator and the denominator. We observed that the denominator of the given fraction is $1 - {x^{\dfrac{{ - 2}}{3}}}$ which can also be written as ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$. Then, by using a mathematical identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we can write ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$as $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)$.
So, the given fraction $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ can be written as $\dfrac{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)}}{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)}}$.
The term $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)$ is present in both the numerator and the denominator so, it is cancelled out and the \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] can be written as $\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{1 + {x^{\dfrac{{ - 1}}{3}}}}}$. Then we have to take its limit $x \to 1$.
Complete step-by-step solution:
Given, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\].
By taking the limit $x \to 1$ of $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ we get $\dfrac{0}{0}$ which is an indeterminate form.
Here, we have to apply the “L’HOPITAL’S” rule. According to which we have to differentiate the numerator and differentiate the denominator with respect to $x$. So, by differentiating we can write \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] as
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( { - \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}}} \right)}}{{ - \left( { - \dfrac{2}{3}{x^{ - \dfrac{2}{3} - 1}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}}}{{\dfrac{2}{3}{x^{\dfrac{{ - 5}}{3}}}}}
$
Now, by taking limit $x \to 1$ we get
$ \Rightarrow \dfrac{{\dfrac{1}{3}\left( 1 \right)}}{{\dfrac{2}{3}\left( 1 \right)}} = \dfrac{1}{2}$
Thus, the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] is $\dfrac{1}{2}$.
Note: L’HOPITL’S Rule:
If $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}$ or $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{\infty }{\infty }$, then $\mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}$ is the required result.
So, this rule tells us that if we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ which is an indeterminate form then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit $x \to a$which gives the required result.
Alternate method:
This can be solved by simply arranging the terms of the numerator and the denominator. We observed that the denominator of the given fraction is $1 - {x^{\dfrac{{ - 2}}{3}}}$ which can also be written as ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$. Then, by using a mathematical identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we can write ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$as $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)$.
So, the given fraction $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ can be written as $\dfrac{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)}}{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)}}$.
The term $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)$ is present in both the numerator and the denominator so, it is cancelled out and the \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] can be written as $\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{1 + {x^{\dfrac{{ - 1}}{3}}}}}$. Then we have to take its limit $x \to 1$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
How is Abiogenesis Theory Disproved Experimentally?
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light