Answer
Verified
499.2k+ views
Hint: The number $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is an irrational number. Assume it to be some variable irrational number and then solve by squaring both sides.
The number given in the question is an irrational number. Its square root is also an irrational number.
Thus, let $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } = \sqrt a + \sqrt b $. We know that the cube root of 125 is 5. So, we’ll get:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt {5 + \sqrt {24} } $
Squaring both sides, we’ll get:
$
\Rightarrow {\left( {\sqrt a + \sqrt b } \right)^2} = {\left( {\sqrt {5 + \sqrt {24} } } \right)^2}, \\
\Rightarrow a + b + 2\sqrt {ab} = 5 + \sqrt {24} .....(i) \\
$
Now, equating rational parts on both sides, we’ll get:
$ \Rightarrow a + b = 5$,
Similarly equating irrational parts on both sides, we have:
$
\Rightarrow 2\sqrt {ab} = \sqrt {24} , \\
\Rightarrow 4ab = 24, \\
\Rightarrow ab = 6 .....(ii) \\
$
Putting $b = 5 - a$ from equation $(i)$, we’ll get:
$
\Rightarrow a\left( {5 - a} \right) = 6, \\
\Rightarrow 5a - {a^2} = 6, \\
\Rightarrow {a^2} - 5a + 6 = 0 \\
$
This is a quadratic equation in a. We will use factorization method to solve it:
$
\Rightarrow {a^2} - 5a + 6 = 0, \\
\Rightarrow {a^2} - 3a - 2a + 6 = 0, \\
\Rightarrow a\left( {a - 3} \right) - 2\left( {a - 3} \right) - 0, \\
\Rightarrow \left( {a - 2} \right)\left( {a - 3} \right) = 0, \\
$
$ \Rightarrow a = 2$ or $a = 3$
From equation $(ii)$, we have $ab = 6$.
If we consider $a = 2$, we will get $b = 3$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 2 + \sqrt 3 $
And if we consider $a = 3$, we will get $b = 2$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 3 + \sqrt 2 $
Therefore the square root $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is $\sqrt 3 + \sqrt 2 $. (B) is the correct option.
Note: If we are facing some difficulty over solving the quadratic equation $a{x^2} + bx + c = 0$by factorization method, we can also use formula for finding its roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
The number given in the question is an irrational number. Its square root is also an irrational number.
Thus, let $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } = \sqrt a + \sqrt b $. We know that the cube root of 125 is 5. So, we’ll get:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt {5 + \sqrt {24} } $
Squaring both sides, we’ll get:
$
\Rightarrow {\left( {\sqrt a + \sqrt b } \right)^2} = {\left( {\sqrt {5 + \sqrt {24} } } \right)^2}, \\
\Rightarrow a + b + 2\sqrt {ab} = 5 + \sqrt {24} .....(i) \\
$
Now, equating rational parts on both sides, we’ll get:
$ \Rightarrow a + b = 5$,
Similarly equating irrational parts on both sides, we have:
$
\Rightarrow 2\sqrt {ab} = \sqrt {24} , \\
\Rightarrow 4ab = 24, \\
\Rightarrow ab = 6 .....(ii) \\
$
Putting $b = 5 - a$ from equation $(i)$, we’ll get:
$
\Rightarrow a\left( {5 - a} \right) = 6, \\
\Rightarrow 5a - {a^2} = 6, \\
\Rightarrow {a^2} - 5a + 6 = 0 \\
$
This is a quadratic equation in a. We will use factorization method to solve it:
$
\Rightarrow {a^2} - 5a + 6 = 0, \\
\Rightarrow {a^2} - 3a - 2a + 6 = 0, \\
\Rightarrow a\left( {a - 3} \right) - 2\left( {a - 3} \right) - 0, \\
\Rightarrow \left( {a - 2} \right)\left( {a - 3} \right) = 0, \\
$
$ \Rightarrow a = 2$ or $a = 3$
From equation $(ii)$, we have $ab = 6$.
If we consider $a = 2$, we will get $b = 3$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 2 + \sqrt 3 $
And if we consider $a = 3$, we will get $b = 2$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 3 + \sqrt 2 $
Therefore the square root $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is $\sqrt 3 + \sqrt 2 $. (B) is the correct option.
Note: If we are facing some difficulty over solving the quadratic equation $a{x^2} + bx + c = 0$by factorization method, we can also use formula for finding its roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE