
Find the value of \[\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}\].
Answer
604.2k+ views
Hint: First of all convert the whole equation in terms of \[\sin \theta \] and \[\cos \theta \] by using \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[sec\theta =\dfrac{1}{\cos \theta }\]. Then multiply the numerator and denominator by \[2.\dfrac{1}{2}\] and use \[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\] and \[\sin 2A=2\sin A\cos A\] to further solve the question.
Complete step-by-step answer:
Here, we have to find the value of the expression \[\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}\]. Let us consider the expression given in the question
\[E=\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}\]
Let us first convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \]. We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[sec\theta =\dfrac{1}{\cos \theta }\]. By using this in the above expression, we get,
\[\begin{align}
& E=\dfrac{\sqrt{3}}{\sin {{20}^{o}}}-\dfrac{1}{\cos {{20}^{o}}} \\
& E=\dfrac{\left( \sqrt{3}\cos {{20}^{o}}-\sin {{20}^{o}} \right)}{\left( \sin {{20}^{o}} \right).\left( \cos {{20}^{o}} \right)} \\
\end{align}\]
By multiplying \[2\times \dfrac{1}{2}\] on both numerator and denominator of the above expression, we get,
\[E=\dfrac{2\times \dfrac{1}{2}\left( \sqrt{3}\cos {{20}^{o}}-\sin {{20}^{o}} \right)}{2\times \dfrac{1}{2}\left( \sin {{20}^{o}} \right).\left( \cos {{20}^{o}} \right)}\]
We can also write the above expression as,
\[E=\dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{o}}-\dfrac{1}{2}\sin {{20}^{o}} \right)}{\dfrac{1}{2}\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
\[\Rightarrow E=\dfrac{4\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{o}}-\dfrac{1}{2}\sin {{20}^{o}} \right)}{\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
We know that \[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\] and \[\cos {{60}^{o}}=\dfrac{1}{2}\]. By using this in the above expression, we get,
\[E=\dfrac{4\left( \sin {{60}^{o}}\cos {{20}^{o}}-\cos {{60}^{o}}\sin {{20}^{o}} \right)}{\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]. By using it in the numerator of the above expression, we get,
\[E=\dfrac{4\left( \sin \left( {{60}^{o}}-{{20}^{o}} \right) \right)}{2\sin {{20}^{o}}\cos {{20}^{o}}}\]
So, we get, \[E=\dfrac{4\left( \sin {{40}^{o}} \right)}{2\sin {{20}^{o}}\cos {{20}^{o}}}\]
Now, we know that \[2\sin A\cos A=\sin 2A\]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{4\left( \sin {{40}^{o}} \right)}{\sin \left( 2\left( {{20}^{o}} \right) \right)}\]
\[\Rightarrow E=\dfrac{4\left( \sin {{40}^{o}} \right)}{\left( \sin {{40}^{o}} \right)}\]
By canceling the like terms from the above expression, we get E = 4.
So, we get the value of \[\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}=4\].
Note: Students must remember the general trigonometric formulas like \[\sin \left( A\pm B \right)=\sin A\cos B\pm \cos A\sin B\] and \[\sin 2A=2\sin A\cos A\]. Also, students should keep in mind the values of sine and cosine at general angles like \[{{0}^{o}},{{30}^{o}},{{60}^{o}},{{45}^{o}}\text{ and }{{90}^{o}}\]. Always try to convert the given expression into some trigonometric formulas in these types of questions.
Complete step-by-step answer:
Here, we have to find the value of the expression \[\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}\]. Let us consider the expression given in the question
\[E=\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}\]
Let us first convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \]. We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[sec\theta =\dfrac{1}{\cos \theta }\]. By using this in the above expression, we get,
\[\begin{align}
& E=\dfrac{\sqrt{3}}{\sin {{20}^{o}}}-\dfrac{1}{\cos {{20}^{o}}} \\
& E=\dfrac{\left( \sqrt{3}\cos {{20}^{o}}-\sin {{20}^{o}} \right)}{\left( \sin {{20}^{o}} \right).\left( \cos {{20}^{o}} \right)} \\
\end{align}\]
By multiplying \[2\times \dfrac{1}{2}\] on both numerator and denominator of the above expression, we get,
\[E=\dfrac{2\times \dfrac{1}{2}\left( \sqrt{3}\cos {{20}^{o}}-\sin {{20}^{o}} \right)}{2\times \dfrac{1}{2}\left( \sin {{20}^{o}} \right).\left( \cos {{20}^{o}} \right)}\]
We can also write the above expression as,
\[E=\dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{o}}-\dfrac{1}{2}\sin {{20}^{o}} \right)}{\dfrac{1}{2}\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
\[\Rightarrow E=\dfrac{4\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{o}}-\dfrac{1}{2}\sin {{20}^{o}} \right)}{\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
We know that \[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\] and \[\cos {{60}^{o}}=\dfrac{1}{2}\]. By using this in the above expression, we get,
\[E=\dfrac{4\left( \sin {{60}^{o}}\cos {{20}^{o}}-\cos {{60}^{o}}\sin {{20}^{o}} \right)}{\left( 2\sin {{20}^{o}}.\cos {{20}^{o}} \right)}\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]. By using it in the numerator of the above expression, we get,
\[E=\dfrac{4\left( \sin \left( {{60}^{o}}-{{20}^{o}} \right) \right)}{2\sin {{20}^{o}}\cos {{20}^{o}}}\]
So, we get, \[E=\dfrac{4\left( \sin {{40}^{o}} \right)}{2\sin {{20}^{o}}\cos {{20}^{o}}}\]
Now, we know that \[2\sin A\cos A=\sin 2A\]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{4\left( \sin {{40}^{o}} \right)}{\sin \left( 2\left( {{20}^{o}} \right) \right)}\]
\[\Rightarrow E=\dfrac{4\left( \sin {{40}^{o}} \right)}{\left( \sin {{40}^{o}} \right)}\]
By canceling the like terms from the above expression, we get E = 4.
So, we get the value of \[\sqrt{3}\operatorname{cosec}{{20}^{o}}-\sec {{20}^{o}}=4\].
Note: Students must remember the general trigonometric formulas like \[\sin \left( A\pm B \right)=\sin A\cos B\pm \cos A\sin B\] and \[\sin 2A=2\sin A\cos A\]. Also, students should keep in mind the values of sine and cosine at general angles like \[{{0}^{o}},{{30}^{o}},{{60}^{o}},{{45}^{o}}\text{ and }{{90}^{o}}\]. Always try to convert the given expression into some trigonometric formulas in these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

