Answer
Verified
395.7k+ views
Hint: Type of question is based on the trigonometric identities. As it looks somewhat complicated but if we know the identities and their use very well then these types of questions become easy for us. We should have an aim of making it as simple as possible to these types of questions through the identities we know.
Complete step-by-step solution:
As this question looks like ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ of which we know the identity i.e. ${{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$i.e. ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$; So moving ahead with the question we will apply the ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ identity to simplify the question through which we can easily get the result.
By comparing the value of ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ with ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ we will get $a=\dfrac{x}{y}$and $b=\dfrac{x-y}{x+y}$. So we will get;
\[\begin{align}
& ={{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right) \\
& As, \\
& {{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) \\
\end{align}\]
By comparing both equation, we will get;
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\left( \dfrac{x}{y} \right)\left( \dfrac{x-y}{x+y} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x\left( x+y \right)-\left( x-y \right)y}{y\left( x+y \right)}}{\dfrac{y(x+y)+x(x-y)}{y\left( x+y \right)}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}^{2}}+xy-xy+{{y}^{2}}}{{{x}^{2}}+xy-xy+{{y}^{2}}} \right) \\
\end{align}\]
As both numerator and denominator have same expressions so they will get cancelled and we will get 1, i.e.
\[\begin{align}
& ={{\tan }^{-1}}1 \\
& =\dfrac{\pi }{4} \\
\end{align}\]
And as we know that \[{{\tan }^{-1}}1\] is equal to \[\dfrac{\pi }{4}\].
Hence the answer is \[\dfrac{\pi }{4}\], so the value of ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ is equal to \[\dfrac{\pi }{4}\]
Note: In order to solve such questions we are required to have a practice on recognising which identity to be used and how to use them. Moreover, being patient while using identity as use of sign is a general mistake we make while solving trigonometry. Here we use the identity of the inverse trigonometric function.
Complete step-by-step solution:
As this question looks like ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ of which we know the identity i.e. ${{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$i.e. ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$; So moving ahead with the question we will apply the ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ identity to simplify the question through which we can easily get the result.
By comparing the value of ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ with ${{\tan }^{-1}}a-{{\tan }^{-1}}b$ we will get $a=\dfrac{x}{y}$and $b=\dfrac{x-y}{x+y}$. So we will get;
\[\begin{align}
& ={{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right) \\
& As, \\
& {{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) \\
\end{align}\]
By comparing both equation, we will get;
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\left( \dfrac{x}{y} \right)\left( \dfrac{x-y}{x+y} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x\left( x+y \right)-\left( x-y \right)y}{y\left( x+y \right)}}{\dfrac{y(x+y)+x(x-y)}{y\left( x+y \right)}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}^{2}}+xy-xy+{{y}^{2}}}{{{x}^{2}}+xy-xy+{{y}^{2}}} \right) \\
\end{align}\]
As both numerator and denominator have same expressions so they will get cancelled and we will get 1, i.e.
\[\begin{align}
& ={{\tan }^{-1}}1 \\
& =\dfrac{\pi }{4} \\
\end{align}\]
And as we know that \[{{\tan }^{-1}}1\] is equal to \[\dfrac{\pi }{4}\].
Hence the answer is \[\dfrac{\pi }{4}\], so the value of ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ is equal to \[\dfrac{\pi }{4}\]
Note: In order to solve such questions we are required to have a practice on recognising which identity to be used and how to use them. Moreover, being patient while using identity as use of sign is a general mistake we make while solving trigonometry. Here we use the identity of the inverse trigonometric function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE