Answer
Verified
499.5k+ views
Hint: We need to know the formulae of trigonometric functions in different quadrants and basic values of trigonometric functions to solve the given problem.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE