Answer
Verified
498.9k+ views
Hint: Expansion of determinant $\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ is ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}.$ Use trigonometry identity to solve further.
Complete step-by-step answer:
We have the given determinant as
Let us suppose value of this determinant is M
M=$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$………………..(1)
As, we know the rules of opening a determinant as
If we have any general determinant as
$\Delta =~\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ Then we can expand it by following way:
\[\begin{align}
& \Delta =\left( {{x}_{1}}\times {{y}_{2}} \right)-\left( {{x}_{2}}{{y}_{1}} \right) \\
& or \\
& \Delta ={{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}....................\left( 2 \right) \\
\end{align}\]
Now using the above expansion as expressed in equation (2), we can expand determinant given in equation (1) as;
$M=\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$
Where
$\begin{align}
& {{x}_{1}}=\cos 15{}^\circ \\
& {{x}_{2}}=\sin 15{}^\circ \\
& {{y}_{1}}=\sin 75{}^\circ \\
& {{y}_{2}}=\cos 75{}^\circ \\
\end{align}$
Therefore, we can write M as
$M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ .......\left( 3 \right)$
Now, we have a trigonometric identity of cos (A+B) as cosA cosB – sinA sinB or vice –versa will also be true.
Hence, equation (3) can be written as
$\begin{align}
& M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ \\
& M=\cos (15+75) \\
& M=\cos 90{}^\circ \\
\end{align}$
We know value of $\cos 90{}^\circ $ as 0, hence we can get value of M as
M=0
Hence from equation (1), we get
$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|=0$
Note: One can calculate cos15, sin15, sin75 and cos75, then expand the given determinant.
We can calculate values as;
$\begin{align}
& \cos 15{}^\circ =\cos \left( 45-30 \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ \\
& \sin 15{}^\circ =\sin \left( 45-30 \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ \\
& \sin 75{}^\circ =\sin \left( 90-15 \right)=\cos 15{}^\circ \\
& \cos 75{}^\circ =\cos \left( 90-15 \right)=\sin 15{}^\circ \\
\end{align}$
But the above process will be much longer than given in the solution.
One can go wrong while expanding the determinant.
$\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|={{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}$
Which is wrong .Correct expression would be ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}$.
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ is ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}.$ Use trigonometry identity to solve further.
Complete step-by-step answer:
We have the given determinant as
Let us suppose value of this determinant is M
M=$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$………………..(1)
As, we know the rules of opening a determinant as
If we have any general determinant as
$\Delta =~\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ Then we can expand it by following way:
\[\begin{align}
& \Delta =\left( {{x}_{1}}\times {{y}_{2}} \right)-\left( {{x}_{2}}{{y}_{1}} \right) \\
& or \\
& \Delta ={{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}....................\left( 2 \right) \\
\end{align}\]
Now using the above expansion as expressed in equation (2), we can expand determinant given in equation (1) as;
$M=\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$
Where
$\begin{align}
& {{x}_{1}}=\cos 15{}^\circ \\
& {{x}_{2}}=\sin 15{}^\circ \\
& {{y}_{1}}=\sin 75{}^\circ \\
& {{y}_{2}}=\cos 75{}^\circ \\
\end{align}$
Therefore, we can write M as
$M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ .......\left( 3 \right)$
Now, we have a trigonometric identity of cos (A+B) as cosA cosB – sinA sinB or vice –versa will also be true.
Hence, equation (3) can be written as
$\begin{align}
& M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ \\
& M=\cos (15+75) \\
& M=\cos 90{}^\circ \\
\end{align}$
We know value of $\cos 90{}^\circ $ as 0, hence we can get value of M as
M=0
Hence from equation (1), we get
$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|=0$
Note: One can calculate cos15, sin15, sin75 and cos75, then expand the given determinant.
We can calculate values as;
$\begin{align}
& \cos 15{}^\circ =\cos \left( 45-30 \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ \\
& \sin 15{}^\circ =\sin \left( 45-30 \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ \\
& \sin 75{}^\circ =\sin \left( 90-15 \right)=\cos 15{}^\circ \\
& \cos 75{}^\circ =\cos \left( 90-15 \right)=\sin 15{}^\circ \\
\end{align}$
But the above process will be much longer than given in the solution.
One can go wrong while expanding the determinant.
$\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|={{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}$
Which is wrong .Correct expression would be ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE