Answer
Verified
474k+ views
Hint: We can see that the terms in the expression can be expressed as powers of 2, 5 and 7. In the given expression replace 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] . Then solve the given expression using formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , and \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] .
Complete step-by-step solution -
According to the question, we have the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
We can write 25 as a square of 5.
\[{{5}^{2}}=25\] …………(1)
Similarly, we can write 343 as the cube of 7.
\[{{7}^{3}}=343\] ………………..(2)
Similarly, we can write 8 as a cube of 2.
\[{{2}^{3}}=8\] ………………….(3)
Similarly, we can write 16 as $4^{th}$ power of 2.
\[{{2}^{4}}=16\] ………………….(4)
Using equation (1), equation (2), equation (3),and equation (4), we can replace 25, 343, 8 and 16 in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
Now, replacing 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] ……………….(5)
Solving equation (5), using the formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{\dfrac{6}{2}}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{\dfrac{20}{4}}}\times {{(2)}^{\dfrac{12}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\] …………………(6)
Now, simplifying equation (6), using the formula \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] and \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , we get
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}-{\dfrac{3}{5}}}}}{{{(2)}^{5+{4}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\]
Hence, the value of the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] is \[\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\].
Note: In this question, one can think to put the numerical values of each exponential term in the expression given. But, if we do so then our calculations will be lengthy and we should also know the value of each exponential term which is not easy. So, whenever one has to solve this type of question, one should try to minimize the calculation by expressing the terms as powers of smallest possible factors like 2, 3, 5, 7,... and avoid any silly mistakes.
Complete step-by-step solution -
According to the question, we have the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
We can write 25 as a square of 5.
\[{{5}^{2}}=25\] …………(1)
Similarly, we can write 343 as the cube of 7.
\[{{7}^{3}}=343\] ………………..(2)
Similarly, we can write 8 as a cube of 2.
\[{{2}^{3}}=8\] ………………….(3)
Similarly, we can write 16 as $4^{th}$ power of 2.
\[{{2}^{4}}=16\] ………………….(4)
Using equation (1), equation (2), equation (3),and equation (4), we can replace 25, 343, 8 and 16 in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
Now, replacing 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] ……………….(5)
Solving equation (5), using the formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{\dfrac{6}{2}}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{\dfrac{20}{4}}}\times {{(2)}^{\dfrac{12}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\] …………………(6)
Now, simplifying equation (6), using the formula \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] and \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , we get
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}-{\dfrac{3}{5}}}}}{{{(2)}^{5+{4}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\]
Hence, the value of the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] is \[\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\].
Note: In this question, one can think to put the numerical values of each exponential term in the expression given. But, if we do so then our calculations will be lengthy and we should also know the value of each exponential term which is not easy. So, whenever one has to solve this type of question, one should try to minimize the calculation by expressing the terms as powers of smallest possible factors like 2, 3, 5, 7,... and avoid any silly mistakes.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE