Answer
Verified
484.5k+ views
Hint: We can see that the terms in the expression can be expressed as powers of 2, 5 and 7. In the given expression replace 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] . Then solve the given expression using formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , and \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] .
Complete step-by-step solution -
According to the question, we have the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
We can write 25 as a square of 5.
\[{{5}^{2}}=25\] …………(1)
Similarly, we can write 343 as the cube of 7.
\[{{7}^{3}}=343\] ………………..(2)
Similarly, we can write 8 as a cube of 2.
\[{{2}^{3}}=8\] ………………….(3)
Similarly, we can write 16 as $4^{th}$ power of 2.
\[{{2}^{4}}=16\] ………………….(4)
Using equation (1), equation (2), equation (3),and equation (4), we can replace 25, 343, 8 and 16 in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
Now, replacing 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] ……………….(5)
Solving equation (5), using the formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{\dfrac{6}{2}}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{\dfrac{20}{4}}}\times {{(2)}^{\dfrac{12}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\] …………………(6)
Now, simplifying equation (6), using the formula \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] and \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , we get
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}-{\dfrac{3}{5}}}}}{{{(2)}^{5+{4}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\]
Hence, the value of the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] is \[\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\].
Note: In this question, one can think to put the numerical values of each exponential term in the expression given. But, if we do so then our calculations will be lengthy and we should also know the value of each exponential term which is not easy. So, whenever one has to solve this type of question, one should try to minimize the calculation by expressing the terms as powers of smallest possible factors like 2, 3, 5, 7,... and avoid any silly mistakes.
Complete step-by-step solution -
According to the question, we have the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
We can write 25 as a square of 5.
\[{{5}^{2}}=25\] …………(1)
Similarly, we can write 343 as the cube of 7.
\[{{7}^{3}}=343\] ………………..(2)
Similarly, we can write 8 as a cube of 2.
\[{{2}^{3}}=8\] ………………….(3)
Similarly, we can write 16 as $4^{th}$ power of 2.
\[{{2}^{4}}=16\] ………………….(4)
Using equation (1), equation (2), equation (3),and equation (4), we can replace 25, 343, 8 and 16 in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] .
Now, replacing 25 by \[{{5}^{2}}\] , 343 by \[{{7}^{3}}\] , 16 by \[{{2}^{4}}\] and 8 by \[{{2}^{3}}\] in the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] ……………….(5)
Solving equation (5), using the formula \[{{({{x}^{m}})}^{n}}={{x}^{mn}}\] , we get
\[\dfrac{{{({{5}^{2}})}^{\dfrac{3}{2}}}\times {{({{7}^{3}})}^{\dfrac{3}{5}}}}{{{({{2}^{4}})}^{\dfrac{5}{4}}}\times {{({{2}^{3}})}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{\dfrac{6}{2}}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{\dfrac{20}{4}}}\times {{(2)}^{\dfrac{12}{3}}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\] …………………(6)
Now, simplifying equation (6), using the formula \[{{x}^{m}}\times \dfrac{1}{{{x}^{n}}}={{x}^{m-n}}\] and \[{{x}^{m}}\times {{x}^{n}}={{x}^{m+n}}\] , we get
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}}}}{{{(2)}^{5}}\times {{(2)}^{4}}\times {{7}^{\dfrac{3}{5}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{9}{5}-{\dfrac{3}{5}}}}}{{{(2)}^{5+{4}}}}\]
\[=\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\]
Hence, the value of the expression \[\dfrac{{{25}^{\dfrac{3}{2}}}\times {{343}^{\dfrac{3}{5}}}}{{{16}^{\dfrac{5}{4}}}\times {{8}^{\dfrac{4}{3}}}\times {{7}^{\dfrac{3}{5}}}}\] is \[\dfrac{{{(5)}^{3}}\times {{(7)}^{\dfrac{6}{5}}}}{{{(2)}^{9}}}\].
Note: In this question, one can think to put the numerical values of each exponential term in the expression given. But, if we do so then our calculations will be lengthy and we should also know the value of each exponential term which is not easy. So, whenever one has to solve this type of question, one should try to minimize the calculation by expressing the terms as powers of smallest possible factors like 2, 3, 5, 7,... and avoid any silly mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE