
Find the value of the following determinant, where $ i=\sqrt{-1} $
$ \left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $
Answer
592.8k+ views
Hint: In order to solve this question, we have to simply expand the determinant in the usual way. After expanding the determinant, get the final expression. Calculate the values of higher powers of $ i $ , by using the given value of $ i $ . Put those calculated values into the final expression and get the answer.
Complete step-by-step answer:
Let the value of the determinant $ \left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ is equal to $ I $ .
Then, we can also write it as $ I=\left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ .
Now we have to find the value of $ I $ , for that we need to know how to expand $ 2\times 2 $ determinant.
Let $ D=\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right| $ be a $ 2\times 2 $ determinant.
Then, the value of determinant i.e. $ D=ad-bc $ .
Similarly, using the same concept for $ I=\left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ , we get
$ \Rightarrow I=2i\times (-2{{i}^{5}})-{{i}^{3}}\times (-3i) $
$ \Rightarrow I=-4{{i}^{6}}+3{{i}^{4}}\ldots \ldots \ldots \ldots \ldots \ldots \ldots .\text{ }\left( 1 \right) $
In order to get the value of $ I $ , we have to find the fourth and sixth power of $ i $ .
We know that $ i=\sqrt{-1} $
Then $ {{i}^{2}}=i\times i=\sqrt{-1}\times \sqrt{-1}={{(\sqrt{-1})}^{2}}=-1 $
Similarly value of $ {{i}^{4}}={{i}^{2}}\times {{i}^{2}}=-1\times -1=1\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{ }\left( 2 \right) $
And finally value of $ {{i}^{6}}={{i}^{4}}\times {{i}^{2}}=1\times -1=-1\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{ }\left( 3 \right) $
Substituting the values of $ {{i}^{4}} $ and $ {{i}^{6}} $ in equation (1), we get
$ \Rightarrow I=-4\times -1+3\times 1 $
After simplifying above equation, we get
$ \Rightarrow I=4+3=7 $
Hence, the value of determinant $ \left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ is equal to 7.
So, the required value is 7.
Note: This question tests the understanding of both complex number as well as determinants. This is also a straightforward question. But one tricky part is that students often expand the determinant and then get the final expression and leave it assuming that expression as final answer. But as the value of $ i $ is given so we have to calculate further the value of the final expression by using the value of $ i $ and that is the answer.
Complete step-by-step answer:
Let the value of the determinant $ \left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ is equal to $ I $ .
Then, we can also write it as $ I=\left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ .
Now we have to find the value of $ I $ , for that we need to know how to expand $ 2\times 2 $ determinant.
Let $ D=\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right| $ be a $ 2\times 2 $ determinant.
Then, the value of determinant i.e. $ D=ad-bc $ .
Similarly, using the same concept for $ I=\left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ , we get
$ \Rightarrow I=2i\times (-2{{i}^{5}})-{{i}^{3}}\times (-3i) $
$ \Rightarrow I=-4{{i}^{6}}+3{{i}^{4}}\ldots \ldots \ldots \ldots \ldots \ldots \ldots .\text{ }\left( 1 \right) $
In order to get the value of $ I $ , we have to find the fourth and sixth power of $ i $ .
We know that $ i=\sqrt{-1} $
Then $ {{i}^{2}}=i\times i=\sqrt{-1}\times \sqrt{-1}={{(\sqrt{-1})}^{2}}=-1 $
Similarly value of $ {{i}^{4}}={{i}^{2}}\times {{i}^{2}}=-1\times -1=1\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{ }\left( 2 \right) $
And finally value of $ {{i}^{6}}={{i}^{4}}\times {{i}^{2}}=1\times -1=-1\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{ }\left( 3 \right) $
Substituting the values of $ {{i}^{4}} $ and $ {{i}^{6}} $ in equation (1), we get
$ \Rightarrow I=-4\times -1+3\times 1 $
After simplifying above equation, we get
$ \Rightarrow I=4+3=7 $
Hence, the value of determinant $ \left| \begin{matrix}
2i & -3i \\
{{i}^{3}} & -2{{i}^{5}} \\
\end{matrix} \right| $ is equal to 7.
So, the required value is 7.
Note: This question tests the understanding of both complex number as well as determinants. This is also a straightforward question. But one tricky part is that students often expand the determinant and then get the final expression and leave it assuming that expression as final answer. But as the value of $ i $ is given so we have to calculate further the value of the final expression by using the value of $ i $ and that is the answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

