Answer
Verified
429.6k+ views
Hint: Use the relation ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ to convert the inverse terms into fractions. Use the BODMAS rule to prioritize the order of operations, where B-Brackets, O-Order, D-Division, M-Multiplication, A-Addition and S-Subtraction.
Complete step-by-step solution:
i) Given to us $({3^0} + {4^{ - 1}}) \times {2^2}$. We use the BODMAS rule to solve this expression.
So, according to the BODMAS rule, expressions inside the brackets should be solved first.
We know that any number/expression to the power is equal to $1$ and we can also write ${4^{ - 1}}$ as $\dfrac{1}{4}$
Now, the expression becomes $\left( {1 + \dfrac{1}{4}} \right) \times {2^2}$ . By solving this, we get $\left( {\dfrac{{4 + 1}}{4}} \right) \times 4 = \left( {\dfrac{5}{4}} \right) \times 4$
So the value of the given expression is $5$
ii) We have to solve $({2^{ - 1}} \times {4^{ - 1}}) \div {2^{ - 2}}$ . Firstly, we will convert the inverse values into fraction so the expression becomes $\left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) \div \dfrac{1}{{{2^2}}}$
Now, we solve the expression inside the brackets so that the expression becomes $\left( {\dfrac{1}{8}} \right) \div \dfrac{1}{{{2^2}}}$
Now this expression can be written as $\dfrac{{\left( {\dfrac{1}{8}} \right)}}{{\left( {\dfrac{1}{4}} \right)}}$ , by solving this we get the value $\dfrac{1}{2}$
Therefore, the value of the given expression is $\dfrac{1}{2}$
iii) To solve this, we have to remove the brackets first. We know that ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ is also true vice verse so the given expression now becomes ${2^2} + {3^2} + {4^2}$
By solving, we get $4 + 9 + 16 = 29$
Hence the value of the given expression is $29$
iv) We already know that any number/expression to the power zero would be one. Therefore the value of the given expression is $1$
v) In the given expression ${\left( {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right)^2}$we have to remove the inverse first so we can write this expression as ${\left( {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2}} \right)^2}$
By solving, we get ${\left( {\dfrac{9}{4}} \right)^2}$
Therefore, the value of the given expression is $\dfrac{{81}}{{16}}$
Note: One might mistake the value of any expression or number to the power zero would be zero, but the value is $1$ and not zero. Note that the BODMAS rule applies for every type of equation/expression and they should only be solved satisfying these rules.
Complete step-by-step solution:
i) Given to us $({3^0} + {4^{ - 1}}) \times {2^2}$. We use the BODMAS rule to solve this expression.
So, according to the BODMAS rule, expressions inside the brackets should be solved first.
We know that any number/expression to the power is equal to $1$ and we can also write ${4^{ - 1}}$ as $\dfrac{1}{4}$
Now, the expression becomes $\left( {1 + \dfrac{1}{4}} \right) \times {2^2}$ . By solving this, we get $\left( {\dfrac{{4 + 1}}{4}} \right) \times 4 = \left( {\dfrac{5}{4}} \right) \times 4$
So the value of the given expression is $5$
ii) We have to solve $({2^{ - 1}} \times {4^{ - 1}}) \div {2^{ - 2}}$ . Firstly, we will convert the inverse values into fraction so the expression becomes $\left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) \div \dfrac{1}{{{2^2}}}$
Now, we solve the expression inside the brackets so that the expression becomes $\left( {\dfrac{1}{8}} \right) \div \dfrac{1}{{{2^2}}}$
Now this expression can be written as $\dfrac{{\left( {\dfrac{1}{8}} \right)}}{{\left( {\dfrac{1}{4}} \right)}}$ , by solving this we get the value $\dfrac{1}{2}$
Therefore, the value of the given expression is $\dfrac{1}{2}$
iii) To solve this, we have to remove the brackets first. We know that ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ is also true vice verse so the given expression now becomes ${2^2} + {3^2} + {4^2}$
By solving, we get $4 + 9 + 16 = 29$
Hence the value of the given expression is $29$
iv) We already know that any number/expression to the power zero would be one. Therefore the value of the given expression is $1$
v) In the given expression ${\left( {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right)^2}$we have to remove the inverse first so we can write this expression as ${\left( {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2}} \right)^2}$
By solving, we get ${\left( {\dfrac{9}{4}} \right)^2}$
Therefore, the value of the given expression is $\dfrac{{81}}{{16}}$
Note: One might mistake the value of any expression or number to the power zero would be zero, but the value is $1$ and not zero. Note that the BODMAS rule applies for every type of equation/expression and they should only be solved satisfying these rules.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE