Find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ?
(a) $ \dfrac{1}{2} $
(b) 1
(c) 2
(d) $ -\dfrac{1}{4} $
Answer
Verified
448.5k+ views
Hint: We start solving the problem by equating the given limit to L. We then make use of the result $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ to proceed through the problem. We then make the necessary arrangements in the problem and make use of the result $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ to further through the problem. We then make the necessary calculations and use the results $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ to get the required value of the given limit in the problem.
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
List out three methods of soil conservation
Complete the following word chain of verbs Write eat class 10 english CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE