
Find the value of trigonometric equation ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$.
Answer
619.8k+ views
Hint: In this question, we use trigonometric values to solve problems. Like ${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2$ put these trigonometric values in question and after some calculation we can get the required answer.
Complete step-by-step answer:
Given, ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
As we know the some standard values of trigonometric angles,
${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2 $
Put these trigonometric values in ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
\[ \Rightarrow 3 \times {\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - 2 \times {\left( {\sqrt 3 } \right)^2} + {\left( {\sqrt 2 } \right)^2}\]
Square the following values,
\[
\Rightarrow 3 \times \dfrac{4}{3} - 2 \times 3 + 2 \\
\Rightarrow 4 - 6 + 2 \\
\Rightarrow 6 - 6 \\
\Rightarrow 0 \\
\]
So, the value of ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$ is 0.
Note: Whenever we face such types of problems we use some important points. First we write the all values of trigonometric angles should be used in question, then put all trigonometric values in question. So, after some calculation we will get the required answer.
Complete step-by-step answer:
Given, ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
As we know the some standard values of trigonometric angles,
${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2 $
Put these trigonometric values in ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
\[ \Rightarrow 3 \times {\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - 2 \times {\left( {\sqrt 3 } \right)^2} + {\left( {\sqrt 2 } \right)^2}\]
Square the following values,
\[
\Rightarrow 3 \times \dfrac{4}{3} - 2 \times 3 + 2 \\
\Rightarrow 4 - 6 + 2 \\
\Rightarrow 6 - 6 \\
\Rightarrow 0 \\
\]
So, the value of ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$ is 0.
Note: Whenever we face such types of problems we use some important points. First we write the all values of trigonometric angles should be used in question, then put all trigonometric values in question. So, after some calculation we will get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

