Answer
Verified
466.8k+ views
Hint: Such question is to be done on the basic quadrant rule of trigonometry.
In the first quadrant the values of \[\sin ,\cos ,\tan \]and \[\cot \] are positive. In the second quadrant \[\sin \,and\,\cos ec\] are positive. In the third quadrant \[\tan \] and the\[\cot \]and positive and in the fourth quadrant \[\cos \] and \[\sec \] are positive.
Trigonometric ratio’s do change at odd multiples of \[{90^0},{270^0},{450^0}\]etc
Example \[\operatorname{Sin} (90 - \theta ) = \operatorname{Cos} \theta \]
At odd multiples of \[{90^0}\operatorname{Sin} \] change to \[\cos \] and \[\cos \] to \[\sin ,\tan \] changes to \[\cot \] and \[\cot \]changes to \[\tan ,\] \[\cos es\] changes to \[\sec \] and \[\sec \] changes to \[\cos es\]
Trigonometric ratios do not change at even multiples of \[{90^0}\,\] i.e. \[180,360\]etc.
They remain same
In first quadrant\[\theta \] lies between \[O < \theta < 90\]
In second quadrant\[\theta \] lies between \[90 < O < 180\]
In third quadrant\[\theta \] lies between \[180 < \theta < 270\]
In fourth quadrant\[\theta \] lies between \[360 < \theta < 270\]
Therefore,
Complete step by step answer:
\[\sin {765^0}.........(1)\]
We can write \[765 = 720 + 45\]
\[ \Rightarrow 765 = 2 \times 360 + 45...........eqn(2)\]
Using the equation (2) in (1)
We have, \[(\sin ){765^0} = \operatorname{Sin} \left[ { = 2(360) + 45} \right]\]
We know \[360 + \theta \] lies in the first quadrant and in the first quadrant all trigonometric ratios are positive.
Also \[360\] is an even multiple of \[90\]
Hence \[\operatorname{Sin} (360 + \theta ) = \operatorname{Sin} \theta \]
i.e. \[Sin\left[ {2(360) + 45)} \right] = \operatorname{Sin} 45\]
Note: The quadrant rule can be used to find the trigonometric ratio of any angle. In the first round it covers \[{360^0}\]. Second \[{720^0}\] and so on.
All the trigonometric ratio is converted into standard angles, whose values are known through the trigonometric table.
In the first quadrant the values of \[\sin ,\cos ,\tan \]and \[\cot \] are positive. In the second quadrant \[\sin \,and\,\cos ec\] are positive. In the third quadrant \[\tan \] and the\[\cot \]and positive and in the fourth quadrant \[\cos \] and \[\sec \] are positive.
Trigonometric ratio’s do change at odd multiples of \[{90^0},{270^0},{450^0}\]etc
Example \[\operatorname{Sin} (90 - \theta ) = \operatorname{Cos} \theta \]
At odd multiples of \[{90^0}\operatorname{Sin} \] change to \[\cos \] and \[\cos \] to \[\sin ,\tan \] changes to \[\cot \] and \[\cot \]changes to \[\tan ,\] \[\cos es\] changes to \[\sec \] and \[\sec \] changes to \[\cos es\]
Trigonometric ratios do not change at even multiples of \[{90^0}\,\] i.e. \[180,360\]etc.
They remain same
In first quadrant\[\theta \] lies between \[O < \theta < 90\]
In second quadrant\[\theta \] lies between \[90 < O < 180\]
In third quadrant\[\theta \] lies between \[180 < \theta < 270\]
In fourth quadrant\[\theta \] lies between \[360 < \theta < 270\]
Therefore,
Complete step by step answer:
\[\sin {765^0}.........(1)\]
We can write \[765 = 720 + 45\]
\[ \Rightarrow 765 = 2 \times 360 + 45...........eqn(2)\]
Using the equation (2) in (1)
We have, \[(\sin ){765^0} = \operatorname{Sin} \left[ { = 2(360) + 45} \right]\]
We know \[360 + \theta \] lies in the first quadrant and in the first quadrant all trigonometric ratios are positive.
Also \[360\] is an even multiple of \[90\]
Hence \[\operatorname{Sin} (360 + \theta ) = \operatorname{Sin} \theta \]
i.e. \[Sin\left[ {2(360) + 45)} \right] = \operatorname{Sin} 45\]
Note: The quadrant rule can be used to find the trigonometric ratio of any angle. In the first round it covers \[{360^0}\]. Second \[{720^0}\] and so on.
All the trigonometric ratio is converted into standard angles, whose values are known through the trigonometric table.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE