Answer
Verified
470.7k+ views
Hint:Here first we will simplify the given equation and then apply the following formula:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE