
Find the value of x if,
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\].
Answer
593.1k+ views
Hint:Here first we will simplify the given equation and then apply the following formula:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

