Answer
Verified
498.3k+ views
Hint: Let us try to reduce the given equation to a perfect polynomial equation of x. So, we can find the roots of that equation easily.
Complete step-by-step answer:
As we know that the given equation is,
$\Rightarrow$ \[\dfrac{5}{{x{\text{ }} - {\text{ }}5}}{\text{ + }}\dfrac{2}{{x{\text{ }} - {\text{ 2}}}}{\text{ = }}\dfrac{3}{{x{\text{ }} - {\text{ }}3}}{\text{ + }}\dfrac{4}{{x{\text{ }} - {\text{ }}4}}\] (1)
Now, we have to solve equation 1.
First, we had to reduce equation 1 to a perfect polynomial equation.
For that we had to take LCM on LHS and RHS of equation 1 and then cross-multiply both sides of that equation.
So, taking LCM on LHS and RHS of equation 1. We get,
$\Rightarrow$ \[\dfrac{{5\left( {x{\text{ }} - {\text{ 2}}} \right){\text{ }} + {\text{ 2}}\left( {x{\text{ }} - {\text{ 5}}} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3\left( {x{\text{ }} - {\text{ 4}}} \right){\text{ }} + {\text{ }}4\left( {x{\text{ }} - {\text{ 3}}} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (2)
On solving the numerator of LHS and RHS of equation 2. We get,
$\Rightarrow$ \[\dfrac{{5x{\text{ }} - {\text{ }}10{\text{ }} + {\text{ 2}}x{\text{ }} - {\text{ }}10}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3x{\text{ }} - {\text{ }}12{\text{ }} + {\text{ }}4x{\text{ }} - {\text{ }}12}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\]
$\Rightarrow$ \[\dfrac{{\left( {7x{\text{ }} - {\text{ }}20} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{\left( {7x{\text{ }} - {\text{ }}24} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (3)
Now cross-multiplying LHS and RHS of equation 3. To get the required polynomial equation of x.
$\Rightarrow$ \[\left( {7x{\text{ }} - {\text{ }}20} \right)\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right){\text{ = }}\left( {7x{\text{ }} - {\text{ }}24} \right)\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\] (4)
Now we had to solve equation 3.
So, solving equation 3 step by step.
Multiplying \[\left( {7x{\text{ }} - {\text{ }}20} \right)\] and \[\left( {x{\text{ }} - {\text{ 3}}} \right)\] in LHS of equation 3.
And multiplying \[\left( {7x{\text{ }} - {\text{ }}24} \right)\] and \[\left( {x{\text{ }} - {\text{ 5}}} \right)\] in RHS of equation 3. We get,
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ }}21x{\text{ }} - {\text{ }}20x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}35x{\text{ }} - {\text{ }}24x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ 4}}1x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}59x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
Now solving the LHS and RHS of the above equation. We get,
$\Rightarrow$ \[\left( {7{x^3}{\text{ }} - {\text{ 4}}1{x^2}{\text{ }} + {\text{ }}60x} \right){\text{ }} - {\text{ }}\left( {28{x^2}{\text{ }} - {\text{ 164}}x{\text{ + 24}}0} \right){\text{ }} = {\text{ }}\left( {7{x^3}{\text{ }} - {\text{ }}59{x^2}{\text{ }} + {\text{ }}120x} \right){\text{ }} - {\text{ }}\left( {14{x^2}{\text{ }} - {\text{ 118}}x{\text{ + }}240} \right)\]
On solving the above equation. We get,
$\Rightarrow$ \[7{x^3}{\text{ }} - {\text{ 69}}{x^2}{\text{ + 224}}x{\text{ }} - {\text{ 24}}0{\text{ }} = {\text{ }}7{x^3}{\text{ }} - {\text{ 73}}{x^2}{\text{ }} + {\text{ }}238x{\text{ }} - {\text{ }}240\] (5)
Now subtracting RHS from the LHS of equation 5. We get,
$\Rightarrow$ \[4{x^2}{\text{ }} - {\text{ }}14x{\text{ }} = {\text{ }}0\]
Now we have to solve the above quadratic equation of x. To get the required value of x.
Taking x common from LHS of the above equation. We get,
$\Rightarrow$ x(4x – 14) = 0
So, from the above equation we get x = 0, \[\dfrac{{14}}{4}\].
Hence, the correct value of x that satisfies the given equation will be x = 0, \[\dfrac{7}{2}\].
So, the correct option will be D.
Note: Whenever we come up with this type of problem where we are given with an equation in which variable x is in the denominator of the equation. Then first we take the LCM of LHS and RHS of the given equation. And then we cross-multiply both sides of the equation. After that we try to manipulate the equation. So, that we can get a perfect polynomial equation. After that it will be easy to find the solution of a quadratic or cubic.
Complete step-by-step answer:
As we know that the given equation is,
$\Rightarrow$ \[\dfrac{5}{{x{\text{ }} - {\text{ }}5}}{\text{ + }}\dfrac{2}{{x{\text{ }} - {\text{ 2}}}}{\text{ = }}\dfrac{3}{{x{\text{ }} - {\text{ }}3}}{\text{ + }}\dfrac{4}{{x{\text{ }} - {\text{ }}4}}\] (1)
Now, we have to solve equation 1.
First, we had to reduce equation 1 to a perfect polynomial equation.
For that we had to take LCM on LHS and RHS of equation 1 and then cross-multiply both sides of that equation.
So, taking LCM on LHS and RHS of equation 1. We get,
$\Rightarrow$ \[\dfrac{{5\left( {x{\text{ }} - {\text{ 2}}} \right){\text{ }} + {\text{ 2}}\left( {x{\text{ }} - {\text{ 5}}} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3\left( {x{\text{ }} - {\text{ 4}}} \right){\text{ }} + {\text{ }}4\left( {x{\text{ }} - {\text{ 3}}} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (2)
On solving the numerator of LHS and RHS of equation 2. We get,
$\Rightarrow$ \[\dfrac{{5x{\text{ }} - {\text{ }}10{\text{ }} + {\text{ 2}}x{\text{ }} - {\text{ }}10}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3x{\text{ }} - {\text{ }}12{\text{ }} + {\text{ }}4x{\text{ }} - {\text{ }}12}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\]
$\Rightarrow$ \[\dfrac{{\left( {7x{\text{ }} - {\text{ }}20} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{\left( {7x{\text{ }} - {\text{ }}24} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (3)
Now cross-multiplying LHS and RHS of equation 3. To get the required polynomial equation of x.
$\Rightarrow$ \[\left( {7x{\text{ }} - {\text{ }}20} \right)\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right){\text{ = }}\left( {7x{\text{ }} - {\text{ }}24} \right)\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\] (4)
Now we had to solve equation 3.
So, solving equation 3 step by step.
Multiplying \[\left( {7x{\text{ }} - {\text{ }}20} \right)\] and \[\left( {x{\text{ }} - {\text{ 3}}} \right)\] in LHS of equation 3.
And multiplying \[\left( {7x{\text{ }} - {\text{ }}24} \right)\] and \[\left( {x{\text{ }} - {\text{ 5}}} \right)\] in RHS of equation 3. We get,
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ }}21x{\text{ }} - {\text{ }}20x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}35x{\text{ }} - {\text{ }}24x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ 4}}1x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}59x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
Now solving the LHS and RHS of the above equation. We get,
$\Rightarrow$ \[\left( {7{x^3}{\text{ }} - {\text{ 4}}1{x^2}{\text{ }} + {\text{ }}60x} \right){\text{ }} - {\text{ }}\left( {28{x^2}{\text{ }} - {\text{ 164}}x{\text{ + 24}}0} \right){\text{ }} = {\text{ }}\left( {7{x^3}{\text{ }} - {\text{ }}59{x^2}{\text{ }} + {\text{ }}120x} \right){\text{ }} - {\text{ }}\left( {14{x^2}{\text{ }} - {\text{ 118}}x{\text{ + }}240} \right)\]
On solving the above equation. We get,
$\Rightarrow$ \[7{x^3}{\text{ }} - {\text{ 69}}{x^2}{\text{ + 224}}x{\text{ }} - {\text{ 24}}0{\text{ }} = {\text{ }}7{x^3}{\text{ }} - {\text{ 73}}{x^2}{\text{ }} + {\text{ }}238x{\text{ }} - {\text{ }}240\] (5)
Now subtracting RHS from the LHS of equation 5. We get,
$\Rightarrow$ \[4{x^2}{\text{ }} - {\text{ }}14x{\text{ }} = {\text{ }}0\]
Now we have to solve the above quadratic equation of x. To get the required value of x.
Taking x common from LHS of the above equation. We get,
$\Rightarrow$ x(4x – 14) = 0
So, from the above equation we get x = 0, \[\dfrac{{14}}{4}\].
Hence, the correct value of x that satisfies the given equation will be x = 0, \[\dfrac{7}{2}\].
So, the correct option will be D.
Note: Whenever we come up with this type of problem where we are given with an equation in which variable x is in the denominator of the equation. Then first we take the LCM of LHS and RHS of the given equation. And then we cross-multiply both sides of the equation. After that we try to manipulate the equation. So, that we can get a perfect polynomial equation. After that it will be easy to find the solution of a quadratic or cubic.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE