Answer
Verified
453.3k+ views
Hint: We will use the law of equality and equate each element which is at the same position corresponding to its matrix. After equating we will get equations and by solving those equations, we will get the required values.
Complete step by step answer:
(i)
Given $\left[ \begin{matrix}
4 & 3 \\
x & 5 \\
\end{matrix} \right]=\left[ \begin{matrix}
y & z \\
1 & 5 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$y=4$
Equating elements in first row second column of both the matrix, then we will get
$z=3$
Equating elements in second row and first column of both the matrix, then we will get
$x=1$
(ii)
Given $\left[ \begin{matrix}
x+y & 2 \\
5+z & xy \\
\end{matrix} \right]=\left[ \begin{matrix}
6 & 2 \\
5 & 8 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$x+y=6...\left( \text{i} \right)$
Equating elements in second row first column of both the matrix, then we will get
$\begin{align}
& z+5=5 \\
& \Rightarrow z=0 \\
\end{align}$
Equating elements in second row and second column of both the matrix, then we will get
$xy=8...\left( \text{ii} \right)$
Solving equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ by substituting the value $y=6-x$ from equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& x\left( 6-x \right)=8 \\
& \Rightarrow 6x-{{x}^{2}}=8 \\
& \Rightarrow {{x}^{2}}-6x+8=0 \\
& \Rightarrow {{x}^{2}}-4x-2x+8=0 \\
& \Rightarrow x\left( x-4 \right)-2\left( x-4 \right)=0 \\
& \Rightarrow \left( x-4 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=4\text{ or }x=2 \\
\end{align}$
If $x=4$, then the value of $y$ is $6-x=6-4=2$.
If $x=2$, then the value of $y$ is $6-x=6-2=4$.
(iii)
Given $\left[ \begin{matrix}
x+y+z \\
x+z \\
y+z \\
\end{matrix} \right]=\left[ \begin{matrix}
9 \\
5 \\
7 \\
\end{matrix} \right]$
Equating the terms in first row first column then we will have
$x+y+z=9....\left( \text{a} \right)$
Equating the terms in second row first column then we will have
$x+z=5....\left( \text{b} \right)$
Equating the terms in third row first column then we will have
$y+z=7....\left( \text{c} \right)$
Reducing the equation $\left( a \right)$ by substituting $x=5-z$ from equation $\left( \text{b} \right)$, then we will get
$\begin{align}
& x+y+z=9 \\
& \Rightarrow 5-z+y+z=9 \\
& \Rightarrow y=9-5 \\
& \Rightarrow y=4 \\
\end{align}$
Now the value of $z$ from equation $\left( \text{c} \right)$ is given by
$\begin{align}
& y+z=7 \\
& \Rightarrow 4+z=7 \\
& \Rightarrow z=7-4 \\
& \Rightarrow z=3 \\
\end{align}$
$\therefore $ $x=5-z=5-3=2$.
Note: Law of equality for matrices only applies when the both the matrices have the same dimensions. So, we need to check the dimensions of the given matrices before going to solve some other problems.
Complete step by step answer:
(i)
Given $\left[ \begin{matrix}
4 & 3 \\
x & 5 \\
\end{matrix} \right]=\left[ \begin{matrix}
y & z \\
1 & 5 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$y=4$
Equating elements in first row second column of both the matrix, then we will get
$z=3$
Equating elements in second row and first column of both the matrix, then we will get
$x=1$
(ii)
Given $\left[ \begin{matrix}
x+y & 2 \\
5+z & xy \\
\end{matrix} \right]=\left[ \begin{matrix}
6 & 2 \\
5 & 8 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$x+y=6...\left( \text{i} \right)$
Equating elements in second row first column of both the matrix, then we will get
$\begin{align}
& z+5=5 \\
& \Rightarrow z=0 \\
\end{align}$
Equating elements in second row and second column of both the matrix, then we will get
$xy=8...\left( \text{ii} \right)$
Solving equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ by substituting the value $y=6-x$ from equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& x\left( 6-x \right)=8 \\
& \Rightarrow 6x-{{x}^{2}}=8 \\
& \Rightarrow {{x}^{2}}-6x+8=0 \\
& \Rightarrow {{x}^{2}}-4x-2x+8=0 \\
& \Rightarrow x\left( x-4 \right)-2\left( x-4 \right)=0 \\
& \Rightarrow \left( x-4 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=4\text{ or }x=2 \\
\end{align}$
If $x=4$, then the value of $y$ is $6-x=6-4=2$.
If $x=2$, then the value of $y$ is $6-x=6-2=4$.
(iii)
Given $\left[ \begin{matrix}
x+y+z \\
x+z \\
y+z \\
\end{matrix} \right]=\left[ \begin{matrix}
9 \\
5 \\
7 \\
\end{matrix} \right]$
Equating the terms in first row first column then we will have
$x+y+z=9....\left( \text{a} \right)$
Equating the terms in second row first column then we will have
$x+z=5....\left( \text{b} \right)$
Equating the terms in third row first column then we will have
$y+z=7....\left( \text{c} \right)$
Reducing the equation $\left( a \right)$ by substituting $x=5-z$ from equation $\left( \text{b} \right)$, then we will get
$\begin{align}
& x+y+z=9 \\
& \Rightarrow 5-z+y+z=9 \\
& \Rightarrow y=9-5 \\
& \Rightarrow y=4 \\
\end{align}$
Now the value of $z$ from equation $\left( \text{c} \right)$ is given by
$\begin{align}
& y+z=7 \\
& \Rightarrow 4+z=7 \\
& \Rightarrow z=7-4 \\
& \Rightarrow z=3 \\
\end{align}$
$\therefore $ $x=5-z=5-3=2$.
Note: Law of equality for matrices only applies when the both the matrices have the same dimensions. So, we need to check the dimensions of the given matrices before going to solve some other problems.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE