Answer
Verified
396k+ views
Hint: Type of question is based on the matrix. For solving the type of questions we should know the properties based on how to solve these matrix problems. so by using the matrix identity, we will simplify the LHS and RHS side and find out the $x,y,z$.
Complete step-by-step solution:
So moving ahead with question which we have i.e. \[\left\{ 3\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
2 & 2 \\
\end{matrix} \right]-4\left[ \begin{matrix}
1 & 1 \\
-1 & 2 \\
3 & 1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]\]
On solving the LHS side matrix, by using the identity$x\left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]=\left[ \begin{matrix}
xa & bx \\
cx & dx \\
ex & fx \\
\end{matrix} \right]$.
we will have;
$\left\{ \left[ \begin{matrix}
6 & 0 \\
0 & 6 \\
6 & 6 \\
\end{matrix} \right]-\left[ \begin{matrix}
4 & 4 \\
-4 & 8 \\
12 & 4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]$
Now again using the identity of subtraction and addition of matrices in the LHS side i.e. \[\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]-\left[ \begin{matrix}
g & h \\
i & j \\
k & l \\
\end{matrix} \right] \right\}=\left[ \begin{matrix}
a-g & b-h \\
c-i & d-j \\
e-k & f-l \\
\end{matrix} \right]\] , we will have;
$\begin{align}
& \left\{ \left[ \begin{matrix}
6-4 & 0-4 \\
0-(-4) & 6-8 \\
6-12 & 6-4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left\{ \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}$
As still there are two matrices in the LHS side, so reduce them to a single matrix as we have in the RHS side. So by using the property of multiplication of two matrices i.e. $\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
g \\
h \\
\end{matrix} \right]=\left[ \begin{matrix}
ag+bh \\
cg+dh \\
eg+fh \\
\end{matrix} \right]$, we will have;
\[\begin{align}
& \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
2\times 2+(-4)\times 2 \\
4\times 1+(-2)\times 2 \\
(-6)\times 1+2\times 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
4-8 \\
4-4 \\
-6+4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
-4 \\
0 \\
-2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}\]
On comparing the above result we have $-4=x-3$, $0=y-1v$and $-2=2z$ from where we can calculate the value of $x,y,z$. So
$\begin{align}
& -4=x-3 \\
&\Rightarrow x= -4+3 \\
&\Rightarrow x= -1 \\
\end{align}$
So, we have $x=-1$
Now to find ‘y’ we have $0=y-1$, on simplifying it we have
$\begin{align}
&\Rightarrow 0=y-1 \\
&\Rightarrow y=1 \\
\end{align}$
Hence we got $y=1$
Now to find ‘z’ we have $-2=2z$, on simplifying it we have;
$\begin{align}
& -2=2z \\
&\Rightarrow z=\dfrac{-2}{2} \\
&\Rightarrow z=-1 \\
\end{align}$
Hence, we got $z=-1$
Hence we got the answer i.e. $x= -1$, $y=1$ and $z=-1$
Note: Go through the identity of matrices very well, as they are required to solve the type of question. Avoid making mistakes while multiplying matrices as rows of matrix get multiplied by the column of the 2nd matrix.
Complete step-by-step solution:
So moving ahead with question which we have i.e. \[\left\{ 3\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
2 & 2 \\
\end{matrix} \right]-4\left[ \begin{matrix}
1 & 1 \\
-1 & 2 \\
3 & 1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]\]
On solving the LHS side matrix, by using the identity$x\left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]=\left[ \begin{matrix}
xa & bx \\
cx & dx \\
ex & fx \\
\end{matrix} \right]$.
we will have;
$\left\{ \left[ \begin{matrix}
6 & 0 \\
0 & 6 \\
6 & 6 \\
\end{matrix} \right]-\left[ \begin{matrix}
4 & 4 \\
-4 & 8 \\
12 & 4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]$
Now again using the identity of subtraction and addition of matrices in the LHS side i.e. \[\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]-\left[ \begin{matrix}
g & h \\
i & j \\
k & l \\
\end{matrix} \right] \right\}=\left[ \begin{matrix}
a-g & b-h \\
c-i & d-j \\
e-k & f-l \\
\end{matrix} \right]\] , we will have;
$\begin{align}
& \left\{ \left[ \begin{matrix}
6-4 & 0-4 \\
0-(-4) & 6-8 \\
6-12 & 6-4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left\{ \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}$
As still there are two matrices in the LHS side, so reduce them to a single matrix as we have in the RHS side. So by using the property of multiplication of two matrices i.e. $\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
g \\
h \\
\end{matrix} \right]=\left[ \begin{matrix}
ag+bh \\
cg+dh \\
eg+fh \\
\end{matrix} \right]$, we will have;
\[\begin{align}
& \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
2\times 2+(-4)\times 2 \\
4\times 1+(-2)\times 2 \\
(-6)\times 1+2\times 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
4-8 \\
4-4 \\
-6+4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
-4 \\
0 \\
-2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}\]
On comparing the above result we have $-4=x-3$, $0=y-1v$and $-2=2z$ from where we can calculate the value of $x,y,z$. So
$\begin{align}
& -4=x-3 \\
&\Rightarrow x= -4+3 \\
&\Rightarrow x= -1 \\
\end{align}$
So, we have $x=-1$
Now to find ‘y’ we have $0=y-1$, on simplifying it we have
$\begin{align}
&\Rightarrow 0=y-1 \\
&\Rightarrow y=1 \\
\end{align}$
Hence we got $y=1$
Now to find ‘z’ we have $-2=2z$, on simplifying it we have;
$\begin{align}
& -2=2z \\
&\Rightarrow z=\dfrac{-2}{2} \\
&\Rightarrow z=-1 \\
\end{align}$
Hence, we got $z=-1$
Hence we got the answer i.e. $x= -1$, $y=1$ and $z=-1$
Note: Go through the identity of matrices very well, as they are required to solve the type of question. Avoid making mistakes while multiplying matrices as rows of matrix get multiplied by the column of the 2nd matrix.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE