Answer
Verified
497.7k+ views
Hint: In this question first we will Select a term as $u$ and $v$. Differentiate it till you get zero by using Leibnitz theorem.
Complete step-by-step answer:
So to find ${{y}_{n}}$ means to find $\dfrac{{{d}^{n}}y}{d{{x}^{n}}}$,
So for nth derivative we know that we should use Leibnitz theorem,
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
${{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}$
or in Leibnitz's notation,
$\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}$
In different notation it can be written as,
$d(uv)=udv+vdu$
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
$\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}$
So we have to use the Leibnitz theorem,
So Leibnitz Theorem provides a useful formula for computing the${{n}^{th}}$derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the ${{n}^{th}}$ derivative of a product. The Leibnitz formula expresses the derivative on ${{n}^{th}}$order of the product of two functions.
If $y=u.v$ then $\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$……(1)
The above theorem is Leibnitz theorem,
So Now Let us consider $u=3{{x}^{2}}-4$ and $v={{e}^{x}}$
Here now differentiating$u$for first derivative${{u}_{1}}$,then second derivative${{u}_{2}}$and then third derivative${{u}_{3}}$.
So we get the derivatives as,
So we get ${{u}_{1}},{{u}_{2}},{{u}_{3}}$,
So ${{u}_{1}}=6x$, ${{u}_{2}}=6$,${{u}_{3}}=0$…..(2)
Also differentiating for$v$, For first , second,${{n}^{th}}$derivatives , ${{(n-1)}^{th}}$derivatives, ${{(n-2)}^{nd}}$derivative,
So we get the derivatives as,
same for ${{v}_{1}}={{e}^{x}}$,${{v}_{2}}={{e}^{x}}$, ${{v}_{3}}={{e}^{x}}$ So${{v}_{n}}={{e}^{x}},{{v}_{n-1}}={{e}^{x}},{{v}_{n-2}}={{e}^{x}}$ ………(3)
Now we have to substitute (2) and (3) in (1), that is substituting in Leibnitz theorem,
We get,
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+{}^{n}{{c}_{1}}6x{{e}^{x}}+{}^{n}{{c}_{2}}6{{e}^{x}}$
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+n6x{{e}^{x}}+\dfrac{n(n-1)}{2}6{{e}^{x}}$………………(we know${}^{n}{{c}_{1}}=n$and ${}^{n}{{c}_{2}}=\dfrac{n(n-1)}{2}$)
So simplifying in simple manner we get,
$\begin{align}
& \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+6nx{{e}^{x}}+3n(n-1){{e}^{x}} \\
& \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1)) \\
\end{align}$
As we want to find for${{n}^{th}}$ derivative, So we get the final answer as,
Hence ${{y}_{n}}={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1))$
Note: Be careful using Leibnitz theorem. Use proper substitution of $u$ and $v$. Don’t be confused while applying the $u$ and $v$. While solving confusion occurs. Use the differentiation in the correct manner. Be thorough with ${}^{n}{{c}_{1}}=n$and more. Use proper substitution of$u$and $v$. Don’t jumble between ${{u}_{1}}=6x$,${{u}_{2}}=6$etc.
Complete step-by-step answer:
So to find ${{y}_{n}}$ means to find $\dfrac{{{d}^{n}}y}{d{{x}^{n}}}$,
So for nth derivative we know that we should use Leibnitz theorem,
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
${{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}$
or in Leibnitz's notation,
$\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}$
In different notation it can be written as,
$d(uv)=udv+vdu$
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
$\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}$
So we have to use the Leibnitz theorem,
So Leibnitz Theorem provides a useful formula for computing the${{n}^{th}}$derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the ${{n}^{th}}$ derivative of a product. The Leibnitz formula expresses the derivative on ${{n}^{th}}$order of the product of two functions.
If $y=u.v$ then $\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$……(1)
The above theorem is Leibnitz theorem,
So Now Let us consider $u=3{{x}^{2}}-4$ and $v={{e}^{x}}$
Here now differentiating$u$for first derivative${{u}_{1}}$,then second derivative${{u}_{2}}$and then third derivative${{u}_{3}}$.
So we get the derivatives as,
So we get ${{u}_{1}},{{u}_{2}},{{u}_{3}}$,
So ${{u}_{1}}=6x$, ${{u}_{2}}=6$,${{u}_{3}}=0$…..(2)
Also differentiating for$v$, For first , second,${{n}^{th}}$derivatives , ${{(n-1)}^{th}}$derivatives, ${{(n-2)}^{nd}}$derivative,
So we get the derivatives as,
same for ${{v}_{1}}={{e}^{x}}$,${{v}_{2}}={{e}^{x}}$, ${{v}_{3}}={{e}^{x}}$ So${{v}_{n}}={{e}^{x}},{{v}_{n-1}}={{e}^{x}},{{v}_{n-2}}={{e}^{x}}$ ………(3)
Now we have to substitute (2) and (3) in (1), that is substituting in Leibnitz theorem,
We get,
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+{}^{n}{{c}_{1}}6x{{e}^{x}}+{}^{n}{{c}_{2}}6{{e}^{x}}$
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+n6x{{e}^{x}}+\dfrac{n(n-1)}{2}6{{e}^{x}}$………………(we know${}^{n}{{c}_{1}}=n$and ${}^{n}{{c}_{2}}=\dfrac{n(n-1)}{2}$)
So simplifying in simple manner we get,
$\begin{align}
& \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+6nx{{e}^{x}}+3n(n-1){{e}^{x}} \\
& \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1)) \\
\end{align}$
As we want to find for${{n}^{th}}$ derivative, So we get the final answer as,
Hence ${{y}_{n}}={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1))$
Note: Be careful using Leibnitz theorem. Use proper substitution of $u$ and $v$. Don’t be confused while applying the $u$ and $v$. While solving confusion occurs. Use the differentiation in the correct manner. Be thorough with ${}^{n}{{c}_{1}}=n$and more. Use proper substitution of$u$and $v$. Don’t jumble between ${{u}_{1}}=6x$,${{u}_{2}}=6$etc.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE