Answer
Verified
489k+ views
Hint: In this question apply the property of combination, later on compare the values, so use these concepts to get the solution of the question.
Given equation is
${}^8{C_r} - {}^7{C_3} = {}^7{C_2}$
Above equation is also written as
${}^8{C_r} = {}^7{C_2} + {}^7{C_3}$…………….. (1)
Now we all know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , so use this property in above equation we have,
${}^8{C_r} = \dfrac{{8!}}{{r!\left( {8 - r} \right)!}}$
${}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} = \dfrac{{7!}}{{2! \times 5!}}$
${}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{3! \times 4!}}$
Therefore from equation (1) we have,
$\dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times 5!}} + \dfrac{{7!}}{{3! \times 4!}}$
$ \Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times \left( {5 \times 4!} \right)}} + \dfrac{{7!}}{{\left( {3 \times 2!} \right) \times 4!}} = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{1}{5} + \dfrac{1}{3}} \right] = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{8}{{3 \times 5}}} \right] = \dfrac{{8 \times 7!}}{{\left( {3 \times 2!} \right) \times \left( {5 \times 4!} \right)}}$
Now we all know that $\left( {8 \times 7! = 8!} \right),\left( {3 \times 2! = 3!} \right),\left( {5 \times 4! = 5!} \right)$
$
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times 5!}} \\
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times \left( {8 - 3} \right)!}} \\
$
Now compare the denominator part of L.H.S and R.H.S as numerator is same we have,
$r = 3$.
So, this is the required value of r.
Note: In such types of questions the key concept we have to remember is that always recall the property of combination which is stated above, then using this property simplify the equation and then compare the denominator part of L.H.S and R.H.S as numerator is same, we will get the required value of r.
Given equation is
${}^8{C_r} - {}^7{C_3} = {}^7{C_2}$
Above equation is also written as
${}^8{C_r} = {}^7{C_2} + {}^7{C_3}$…………….. (1)
Now we all know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , so use this property in above equation we have,
${}^8{C_r} = \dfrac{{8!}}{{r!\left( {8 - r} \right)!}}$
${}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} = \dfrac{{7!}}{{2! \times 5!}}$
${}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{3! \times 4!}}$
Therefore from equation (1) we have,
$\dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times 5!}} + \dfrac{{7!}}{{3! \times 4!}}$
$ \Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times \left( {5 \times 4!} \right)}} + \dfrac{{7!}}{{\left( {3 \times 2!} \right) \times 4!}} = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{1}{5} + \dfrac{1}{3}} \right] = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{8}{{3 \times 5}}} \right] = \dfrac{{8 \times 7!}}{{\left( {3 \times 2!} \right) \times \left( {5 \times 4!} \right)}}$
Now we all know that $\left( {8 \times 7! = 8!} \right),\left( {3 \times 2! = 3!} \right),\left( {5 \times 4! = 5!} \right)$
$
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times 5!}} \\
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times \left( {8 - 3} \right)!}} \\
$
Now compare the denominator part of L.H.S and R.H.S as numerator is same we have,
$r = 3$.
So, this is the required value of r.
Note: In such types of questions the key concept we have to remember is that always recall the property of combination which is stated above, then using this property simplify the equation and then compare the denominator part of L.H.S and R.H.S as numerator is same, we will get the required value of r.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE