Answer
Verified
396.6k+ views
Hint: While solving this question you should know about the general trigonometric formulas. In this problem we will use the general formulas of trigonometry to convert the value of any angle in the form of other angles. And thus we will get the solutions.
Complete step by step answer:
According to our question, we have to find the values of some trigonometric functions. We will look at them one by one. Let us start with part 1.
1. $\sin 7{{\dfrac{1}{2}}^{\circ }}$
From the properties of trigonometric identities, we know that,
$\cos A=1-2{{\sin }^{2}}\dfrac{A}{2}$
So, it means that,
$\begin{align}
& 1-\cos A=2{{\sin }^{2}}\dfrac{A}{2} \\
& \Rightarrow 2{{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=1-\cos {{15}^{\circ }} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\cos {{15}^{\circ }}}{2} \\
\end{align}$
Now, if we solve this then we will get that,
$\begin{align}
& {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}-\sqrt{3}-1}{4\sqrt{2}} \\
& \Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{4-\sqrt{6}-\sqrt{2}}{8}} \\
\end{align}$
(Since $\sin 7{{\dfrac{1}{2}}^{\circ }}$is positive, we can say)
$\Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4-\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}$
2. $\cos 7{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\cos A=2{{\cos }^{2}}\dfrac{A}{2}-1$
Therefore,
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}\dfrac{A}{2}=\cos A+1 \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\cos {{15}^{\circ }}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}+\sqrt{3}+1}{4\sqrt{2}} \\
\end{align}$
If we solve this then we get,
$\Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}}$
3. $\tan 22{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{1-\cos A}{1+\cos A}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{1+\cos {{45}^{\circ }}}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\dfrac{1}{\sqrt{2}}}{1+\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
If we solve this we will get as follows,
$\begin{align}
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{2-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1 \\
\end{align}$
4. $\tan 11{{\dfrac{1}{4}}^{\circ }}$
We know that,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}}\times \dfrac{2\sin 11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{2{{\sin }^{2}}11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
\end{align}$
Since we know that,
$\begin{align}
& 2{{\sin }^{2}}A=1-\cos 2A \\
& \sin 2A=2\sin A\cos A \\
\end{align}$
So, we will substitute these values in the above equation as follows and then we get,
$\begin{align}
& =\dfrac{1-\cos 22{{\dfrac{1}{2}}^{\circ }}}{\sin 22{{\dfrac{1}{2}}^{\circ }}} \\
& =\dfrac{1-\sqrt{\dfrac{1+\cos {{45}^{\circ }}}{2}}}{\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{2}}} \\
& =\dfrac{\sqrt{2}-\sqrt{1+\dfrac{1}{\sqrt{2}}}}{\sqrt{1-\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
For getting our final answer, we will solve this again like this,
$\begin{align}
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}\times \dfrac{\sqrt{2\sqrt{2}+1}}{\sqrt{2\sqrt{2}+1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}.\sqrt{2\sqrt{2}+1}-\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}{\sqrt{\left( \sqrt{2}+1 \right)\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}\left( \sqrt{2}+1 \right)}-\left( \sqrt{2}+1 \right)}{\sqrt{2}-1} \\
& =\sqrt{4+2\sqrt{2}}-\left( \sqrt{2}+1 \right) \\
\end{align}$
So, these are the final answers that we get for the given values.
Note: While solving these types of questions you should be careful about the values of tan, sin, cos at the desired angles because these are directly not defined. We have to calculate these by using different formulas.
Complete step by step answer:
According to our question, we have to find the values of some trigonometric functions. We will look at them one by one. Let us start with part 1.
1. $\sin 7{{\dfrac{1}{2}}^{\circ }}$
From the properties of trigonometric identities, we know that,
$\cos A=1-2{{\sin }^{2}}\dfrac{A}{2}$
So, it means that,
$\begin{align}
& 1-\cos A=2{{\sin }^{2}}\dfrac{A}{2} \\
& \Rightarrow 2{{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=1-\cos {{15}^{\circ }} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\cos {{15}^{\circ }}}{2} \\
\end{align}$
Now, if we solve this then we will get that,
$\begin{align}
& {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}-\sqrt{3}-1}{4\sqrt{2}} \\
& \Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{4-\sqrt{6}-\sqrt{2}}{8}} \\
\end{align}$
(Since $\sin 7{{\dfrac{1}{2}}^{\circ }}$is positive, we can say)
$\Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4-\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}$
2. $\cos 7{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\cos A=2{{\cos }^{2}}\dfrac{A}{2}-1$
Therefore,
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}\dfrac{A}{2}=\cos A+1 \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\cos {{15}^{\circ }}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}+\sqrt{3}+1}{4\sqrt{2}} \\
\end{align}$
If we solve this then we get,
$\Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}}$
3. $\tan 22{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{1-\cos A}{1+\cos A}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{1+\cos {{45}^{\circ }}}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\dfrac{1}{\sqrt{2}}}{1+\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
If we solve this we will get as follows,
$\begin{align}
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{2-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1 \\
\end{align}$
4. $\tan 11{{\dfrac{1}{4}}^{\circ }}$
We know that,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}}\times \dfrac{2\sin 11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{2{{\sin }^{2}}11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
\end{align}$
Since we know that,
$\begin{align}
& 2{{\sin }^{2}}A=1-\cos 2A \\
& \sin 2A=2\sin A\cos A \\
\end{align}$
So, we will substitute these values in the above equation as follows and then we get,
$\begin{align}
& =\dfrac{1-\cos 22{{\dfrac{1}{2}}^{\circ }}}{\sin 22{{\dfrac{1}{2}}^{\circ }}} \\
& =\dfrac{1-\sqrt{\dfrac{1+\cos {{45}^{\circ }}}{2}}}{\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{2}}} \\
& =\dfrac{\sqrt{2}-\sqrt{1+\dfrac{1}{\sqrt{2}}}}{\sqrt{1-\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
For getting our final answer, we will solve this again like this,
$\begin{align}
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}\times \dfrac{\sqrt{2\sqrt{2}+1}}{\sqrt{2\sqrt{2}+1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}.\sqrt{2\sqrt{2}+1}-\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}{\sqrt{\left( \sqrt{2}+1 \right)\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}\left( \sqrt{2}+1 \right)}-\left( \sqrt{2}+1 \right)}{\sqrt{2}-1} \\
& =\sqrt{4+2\sqrt{2}}-\left( \sqrt{2}+1 \right) \\
\end{align}$
So, these are the final answers that we get for the given values.
Note: While solving these types of questions you should be careful about the values of tan, sin, cos at the desired angles because these are directly not defined. We have to calculate these by using different formulas.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE