Answer
Verified
499.5k+ views
Hint: In the above given question, it is important to find out the quadrant in which$\theta $lies. This can be known with the help of the values of the trigonometric functions $\cos \theta $ and $\sin \theta $ so obtained. Once the quadrants are known, further values can be easily calculated.
We have the given equation of the normal form as \[xcos\theta + ysin\theta = p\]
The equation of the given line is \[\sqrt 3 \;x + y + 2 = 0\]
This equation can be reduced as \[ - \sqrt 3 x - y = 2\]
Now, on dividing both sides by we obtain,
\[ - \dfrac{{\sqrt 3 }}{2}x - \dfrac{1}{2}y = \dfrac{2}{2}\]
$ \Rightarrow \left\{ { - \dfrac{{\sqrt 3 }}{2}} \right\}x + \left\{ { - \dfrac{1}{2}} \right\}y = 1$ … (1)
On comparing equation (1) to \[xcos\theta + ysin\theta = p\],
We obtain \[cos\theta = - \dfrac{{\sqrt 3 }}{2}\],\[sin\theta = - \dfrac{1}{2}\]and\[\;p = 1\]
Since the value of \[sin\theta \;\] and \[cos\theta \;\] are both negative,
So, $\theta $ is in the third quadrant.
\[\;\therefore \theta = \pi + \dfrac{\pi }{6}{\text{ }} = \dfrac{{7\pi }}{6}\]
Thus, the respective values of $\theta $ and $p$ are $\dfrac{{7\pi }}{6}$ and $1$.
Note: Whenever we face such types of problems the key point is to have a good grasp of the equations of lines. We need to equate the equation obtained after appropriate manipulations to the given equation of the normal form of the line to obtain the required solution. Also, the knowledge of trigonometric functions is needed, in which quadrants the sign of trigonometric functions is positive or negative.
We have the given equation of the normal form as \[xcos\theta + ysin\theta = p\]
The equation of the given line is \[\sqrt 3 \;x + y + 2 = 0\]
This equation can be reduced as \[ - \sqrt 3 x - y = 2\]
Now, on dividing both sides by we obtain,
\[ - \dfrac{{\sqrt 3 }}{2}x - \dfrac{1}{2}y = \dfrac{2}{2}\]
$ \Rightarrow \left\{ { - \dfrac{{\sqrt 3 }}{2}} \right\}x + \left\{ { - \dfrac{1}{2}} \right\}y = 1$ … (1)
On comparing equation (1) to \[xcos\theta + ysin\theta = p\],
We obtain \[cos\theta = - \dfrac{{\sqrt 3 }}{2}\],\[sin\theta = - \dfrac{1}{2}\]and\[\;p = 1\]
Since the value of \[sin\theta \;\] and \[cos\theta \;\] are both negative,
So, $\theta $ is in the third quadrant.
\[\;\therefore \theta = \pi + \dfrac{\pi }{6}{\text{ }} = \dfrac{{7\pi }}{6}\]
Thus, the respective values of $\theta $ and $p$ are $\dfrac{{7\pi }}{6}$ and $1$.
Note: Whenever we face such types of problems the key point is to have a good grasp of the equations of lines. We need to equate the equation obtained after appropriate manipulations to the given equation of the normal form of the line to obtain the required solution. Also, the knowledge of trigonometric functions is needed, in which quadrants the sign of trigonometric functions is positive or negative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE