Answer
Verified
460.8k+ views
Hint: Start by considering the points as some variable and find out the direction ratios of the line joining these two points. Convert this direction ratios into either vector or cartesian format and apply relevant formula for line passing through the point in direction of AB , Convert one form to the other by taking the correct direction ratios and coordinates.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE