Answer
Verified
430.5k+ views
Hint: In this question, we are going to find the vertex, focus and directrix of the parabola for the given equation.
The given equation is of the form of a parabola and now we are going to compare the given values to the standard form of a parabola.
By comparing those we get the value of vertex, focus and directrix of the parabola.
Hence, we can get the required result.
Formula used: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
${(y - k)^2} = 4p(x - h)$, where $p \ne 0$
The vertex of this parabola is at $\left( {h,k} \right)$.
The focus is at $\left( {h + p,k} \right)$
The directrix is the line $x = h - p$
Complete Step by Step Solution:
In this question, we are going to find the vertex, focus and directrix for the given parabolic equation.
First write the given equation and mark it as $\left( 1 \right)$
$ \Rightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 4\left( {y - 3} \right)...\left( 1 \right)$
The given equation is of the parabolic form
We compare this equation to the standard form of the parabolic equation.
Here $p = 2$
The vertex V of the parabola is $\left( {\dfrac{{ - 1}}{2},3} \right)$
The focus of the parabola is $\left( {\dfrac{{ - 1}}{2},4} \right)$
The directrix of the parabola is $\left( {3 - 1} \right) = 2$
Thus the vertex, focus and directrix of the parabola are $\left( {\dfrac{{ - 1}}{2},3} \right)$, $\left( {\dfrac{{ - 1}}{2},4} \right)$ and $2$ respectively.
Note: The parabola has two real foci situated on its axis one of which is the focus S and the other lies at infinity. The corresponding directrix is also at infinity.
A parabola is a curve where any point is at an equal distance from
A fixed point and a fixed straight line
The given equation is of the form of a parabola and now we are going to compare the given values to the standard form of a parabola.
By comparing those we get the value of vertex, focus and directrix of the parabola.
Hence, we can get the required result.
Formula used: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
${(y - k)^2} = 4p(x - h)$, where $p \ne 0$
The vertex of this parabola is at $\left( {h,k} \right)$.
The focus is at $\left( {h + p,k} \right)$
The directrix is the line $x = h - p$
Complete Step by Step Solution:
In this question, we are going to find the vertex, focus and directrix for the given parabolic equation.
First write the given equation and mark it as $\left( 1 \right)$
$ \Rightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 4\left( {y - 3} \right)...\left( 1 \right)$
The given equation is of the parabolic form
We compare this equation to the standard form of the parabolic equation.
Here $p = 2$
The vertex V of the parabola is $\left( {\dfrac{{ - 1}}{2},3} \right)$
The focus of the parabola is $\left( {\dfrac{{ - 1}}{2},4} \right)$
The directrix of the parabola is $\left( {3 - 1} \right) = 2$
Thus the vertex, focus and directrix of the parabola are $\left( {\dfrac{{ - 1}}{2},3} \right)$, $\left( {\dfrac{{ - 1}}{2},4} \right)$ and $2$ respectively.
Note: The parabola has two real foci situated on its axis one of which is the focus S and the other lies at infinity. The corresponding directrix is also at infinity.
A parabola is a curve where any point is at an equal distance from
A fixed point and a fixed straight line
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE