Answer
Verified
430.8k+ views
Hint: From the question given, we have been asked to find the volume of a rotated region bounded by \[y=\sqrt{x},y=3\], the \[y\] - axis about the \[y\] - axis. To solve the given question, we have to draw the pictorial representation that is the graph for the given question. By using that we can solve the question given.
Complete step by step answer:
Pictorial representation for the given question is shown below:
By using the above graph, we have to find the volume bounded by the region.
We know that, circular cross sections of the bounded region have an area \[\pi {{x}^{2}}\]
Or, since \[x={{y}^{2}}\]
\[\Rightarrow A\left( y \right)=\pi {{y}^{4}}\]
For a thin enough slice, \[\Delta y\], the volume of the slice approaches \[\Rightarrow S\left( y \right)=\Delta y.A\left( y \right)\]
And the volume of the bounded region will be \[\Rightarrow V\left( y \right)=\int\limits_{0}^{3}{\pi {{y}^{4}}dy}\]
Therefore, we have to integrate the above equation to get the volume of the bounded region.
By integrating and simplifying the above equation, we get
\[\Rightarrow V\left( y \right)=\pi \int\limits_{0}^{3}{{{y}^{4}}dy}\]
\[\Rightarrow V\left( y \right)=\pi \dfrac{{{y}^{5}}}{5}|_{0}^{3}\]
\[\Rightarrow V\left( y \right)=48.6\pi \]
Therefore, we got the volume of the bounded region.
Note: We should be very careful while drawing the graph that is the pictorial representation of the given question. Also, we should be well aware of the integration concept. Also, we should be very careful while doing the calculation of the integration part of the above problem. Also, we should be well known about the limits that have to be taken to the integration. We should be very careful while applying the limits for the integration. Also, we should use the graph to find the limits for the integration. Similarly we can use integration and differentiation to find the volume or area of any curves which is not specified before.
Complete step by step answer:
Pictorial representation for the given question is shown below:
By using the above graph, we have to find the volume bounded by the region.
We know that, circular cross sections of the bounded region have an area \[\pi {{x}^{2}}\]
Or, since \[x={{y}^{2}}\]
\[\Rightarrow A\left( y \right)=\pi {{y}^{4}}\]
For a thin enough slice, \[\Delta y\], the volume of the slice approaches \[\Rightarrow S\left( y \right)=\Delta y.A\left( y \right)\]
And the volume of the bounded region will be \[\Rightarrow V\left( y \right)=\int\limits_{0}^{3}{\pi {{y}^{4}}dy}\]
Therefore, we have to integrate the above equation to get the volume of the bounded region.
By integrating and simplifying the above equation, we get
\[\Rightarrow V\left( y \right)=\pi \int\limits_{0}^{3}{{{y}^{4}}dy}\]
\[\Rightarrow V\left( y \right)=\pi \dfrac{{{y}^{5}}}{5}|_{0}^{3}\]
\[\Rightarrow V\left( y \right)=48.6\pi \]
Therefore, we got the volume of the bounded region.
Note: We should be very careful while drawing the graph that is the pictorial representation of the given question. Also, we should be well aware of the integration concept. Also, we should be very careful while doing the calculation of the integration part of the above problem. Also, we should be well known about the limits that have to be taken to the integration. We should be very careful while applying the limits for the integration. Also, we should use the graph to find the limits for the integration. Similarly we can use integration and differentiation to find the volume or area of any curves which is not specified before.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE