
Find the volume of the following triangular pyramid whose base is a triangle with a side of 18 cm and the altitude of 17 cm and the height of the pyramid is 23 cm?
Answer
604.2k+ views
Hint – In this question we have to find the volume of the pyramid given in the question. So use the direct formula to find the volume of the pyramid which is $V = \dfrac{1}{3} \times A \times h$. In order to find the volume first calculate the area of the triangular base. This will help you get the right answer.
“Complete step-by-step answer:”
Given data
Height (h) of pyramid $ = 23$ cm.
The base of the pyramid is a triangle with side length (l) $ = 18$ cm.
And altitude (H) at the side length $ = 17$ cm.
So, as we know that the area (A) of the triangle is half multiplied by side length at which the altitude is time’s altitude.
$ \Rightarrow A = \dfrac{1}{2} \times l \times H$
$ \Rightarrow A = \dfrac{1}{2} \times 18 \times 17 = 9 \times 17 = 153$ Sq. cm.
As we know that the volume (V) of the triangular pyramid is one third multiplied by the area of base time’s height of the pyramid.
$ \Rightarrow V = \dfrac{1}{3} \times A \times h$
\[ \Rightarrow V = \dfrac{1}{3} \times 153 \times 23 = 51 \times 23 = 1173{\text{ c}}{{\text{m}}^3}\]
So, this is the required volume of the pyramid.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply to have the basic understanding of the direct formulae of the volume of the pyramid. We need to keep one thing in mind that the base of the pyramid is composed of a triangular region whose area can be calculated using the formula for the area of the triangle.
“Complete step-by-step answer:”
Given data
Height (h) of pyramid $ = 23$ cm.
The base of the pyramid is a triangle with side length (l) $ = 18$ cm.
And altitude (H) at the side length $ = 17$ cm.
So, as we know that the area (A) of the triangle is half multiplied by side length at which the altitude is time’s altitude.
$ \Rightarrow A = \dfrac{1}{2} \times l \times H$
$ \Rightarrow A = \dfrac{1}{2} \times 18 \times 17 = 9 \times 17 = 153$ Sq. cm.
As we know that the volume (V) of the triangular pyramid is one third multiplied by the area of base time’s height of the pyramid.
$ \Rightarrow V = \dfrac{1}{3} \times A \times h$
\[ \Rightarrow V = \dfrac{1}{3} \times 153 \times 23 = 51 \times 23 = 1173{\text{ c}}{{\text{m}}^3}\]
So, this is the required volume of the pyramid.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply to have the basic understanding of the direct formulae of the volume of the pyramid. We need to keep one thing in mind that the base of the pyramid is composed of a triangular region whose area can be calculated using the formula for the area of the triangle.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

