Find the volume of the largest right circular cone that can be cut of a cube whose edge is \[9cm\].
Answer
Verified
507.3k+ views
Hint: To find the volume of largest cone that can be cut out of a cube whose edge is \[9cm\], take the maximum height of cone as the length of edge of cube, i.e., \[9cm\] and the radius of cone as half of the length of the edge of the cube. Use the formula for calculating the volume of the cone which is \[\dfrac{1}{3}\pi {{r}^{2}}h\].
We have to find the volume of the largest cone that can be cut out of a cube whose edge is \[9cm\]. To do so, we will find the maximum possible value of length and radius of the cone.
Let’s denote the height of the cone by \[h\] and radius of the cone by \[r\].
We observe that the maximum height of the cone can be equal to the length of the edge of the cube. Thus, we have \[h=9cm\].
Similarly, the maximum possible radius of the cone is half of the length of edge of the cube as we have to fit the entire cone inside the cube. Thus, we have \[r=\dfrac{9}{2}=4.5cm\].
We will now evaluate the volume of the cone.
We know that the volume of cone is \[\dfrac{1}{3}\pi {{r}^{2}}h\], where \[r\] denotes the radius of the cone and \[h\] denotes the height of the cone.
Substituting \[r=4.5cm,h=9cm\] in the above equation, we have the volume of cone \[=\dfrac{1}{3}\pi {{r}^{2}}h=\dfrac{1}{3}\left( 3.14 \right){{\left( 4.5 \right)}^{2}}\left( 9 \right)\].
Simplifying the above expression, we have the volume of cone \[=190.75c{{m}^{3}}\].
Hence, the volume of the largest right circular cone that can be fit in a cube of edge \[9cm\] is \[190.75c{{m}^{3}}\].
Note: Be careful about the units while calculating the volume of cones, otherwise we will get an incorrect answer. A right circular cone is a cone where the axis of the cone is the line meeting the vertex to the midpoint of the circular base.
We have to find the volume of the largest cone that can be cut out of a cube whose edge is \[9cm\]. To do so, we will find the maximum possible value of length and radius of the cone.
Let’s denote the height of the cone by \[h\] and radius of the cone by \[r\].
We observe that the maximum height of the cone can be equal to the length of the edge of the cube. Thus, we have \[h=9cm\].
Similarly, the maximum possible radius of the cone is half of the length of edge of the cube as we have to fit the entire cone inside the cube. Thus, we have \[r=\dfrac{9}{2}=4.5cm\].
We will now evaluate the volume of the cone.
We know that the volume of cone is \[\dfrac{1}{3}\pi {{r}^{2}}h\], where \[r\] denotes the radius of the cone and \[h\] denotes the height of the cone.
Substituting \[r=4.5cm,h=9cm\] in the above equation, we have the volume of cone \[=\dfrac{1}{3}\pi {{r}^{2}}h=\dfrac{1}{3}\left( 3.14 \right){{\left( 4.5 \right)}^{2}}\left( 9 \right)\].
Simplifying the above expression, we have the volume of cone \[=190.75c{{m}^{3}}\].
Hence, the volume of the largest right circular cone that can be fit in a cube of edge \[9cm\] is \[190.75c{{m}^{3}}\].
Note: Be careful about the units while calculating the volume of cones, otherwise we will get an incorrect answer. A right circular cone is a cone where the axis of the cone is the line meeting the vertex to the midpoint of the circular base.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE