Answer
Verified
432k+ views
Hint:In the given question, we have to find the x intercepts of the quadratic function in coordinate form. The x intercept of a quadratic equation is the point where the curve meets the x axis. We know that the y coordinate of any point on the x axis is zero. So, we have to find the value of x coordinate when the value of y is zero. So, we substitute y as zero in the given function and find the corresponding values of x. The value of x can be found by using the method of transposition.
Complete step by step answer:
So, the given function is: ${\left( {x + 4.5} \right)^2} - 6.25 = y$
We substitute the value of y as zero to find the x intercept.
So, ${\left( {x + 4.5} \right)^2} - 6.25 = 0$
Shifting $6.25$ to right side of the equation,
$ \Rightarrow {\left( {x + 4.5} \right)^2} = 6.25$
Now, we take the square root of both sides of the equation.
$\Rightarrow \left( {x + 4.5} \right) = \pm \sqrt {6.25} $
Now, we shift $4.5$ to right side of the equation,
$ \Rightarrow x = \pm \sqrt {6.25} - 4.5$
We know that the value of $\sqrt {6.25} $ is $2.5$.
Hence, $x = \pm 2.5 - 4.5$
$\therefore x = 2$ or $x = - 7$
Hence, the x intercepts of the quadratic function in coordinate form in the function ${\left( {x + 4.5} \right)^2} - 6.25 = y$ is $\left( {2,0} \right)$ and $\left( { - 7,0} \right)$.
Note: Method of transposition involves doing the exact same mathematical thing on both sides of an equation with aim of simplification in mind. This method can be used to solve various algebraic equations like the one given in question with ease.
Complete step by step answer:
So, the given function is: ${\left( {x + 4.5} \right)^2} - 6.25 = y$
We substitute the value of y as zero to find the x intercept.
So, ${\left( {x + 4.5} \right)^2} - 6.25 = 0$
Shifting $6.25$ to right side of the equation,
$ \Rightarrow {\left( {x + 4.5} \right)^2} = 6.25$
Now, we take the square root of both sides of the equation.
$\Rightarrow \left( {x + 4.5} \right) = \pm \sqrt {6.25} $
Now, we shift $4.5$ to right side of the equation,
$ \Rightarrow x = \pm \sqrt {6.25} - 4.5$
We know that the value of $\sqrt {6.25} $ is $2.5$.
Hence, $x = \pm 2.5 - 4.5$
$\therefore x = 2$ or $x = - 7$
Hence, the x intercepts of the quadratic function in coordinate form in the function ${\left( {x + 4.5} \right)^2} - 6.25 = y$ is $\left( {2,0} \right)$ and $\left( { - 7,0} \right)$.
Note: Method of transposition involves doing the exact same mathematical thing on both sides of an equation with aim of simplification in mind. This method can be used to solve various algebraic equations like the one given in question with ease.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE