Find the zeroes of the following quadratic polynomials and verify the relationship
Between the zeroes and the coefficients.
$
\left( {\text{i}} \right){x^2} - 2x - 8{\text{ }}\left( {{\text{ii}}} \right)4{s^2} - 4s + 1\left( {{\text{iii}}} \right)6{x^2} - 3 - 7x \\
\left( {{\text{iv}}} \right)4{u^2} + 8u\left( {\text{v}} \right){t^2} - 15\left( {{\text{vi}}} \right)3{x^2} - x - 4 \\
$
Answer
Verified
508.2k+ views
Hint:-To find zeros of quadratic polynomial first you have to make it in factor form and then you can find it’s zeroes and to verify the relationship between the zeroes and the coefficients use sum of zeroes is $\frac{{ - {\text{b}}}}{a}$and product of zeroes $\frac{{\text{c}}}{a}$.
$\left( {\text{i}} \right){x^2} - 2x - 8$
To convert in factor form we will write it as
$
{x^2} - 4x + 2x - 8 = 0 \\
x\left( {x - 4} \right) + 2\left( {x - 4} \right) = 0 \\
\left( {x - 4} \right)\left( {x + 2} \right) = 0 \\
$
Now this equation is in it’s factor form so,
$x = 4,x = - 2$
Now we have to verify the relationship between the zeroes and the coefficients.
Sum of zeroes is equal to $\frac{{ - b}}{a}$ on comparing with $a{x^2} + bx + c = 0$, we get $\left( {b = - 2,a = 1} \right)$
That means $\frac{{ - b}}{a} = 2$and sum of zeroes $\left( {4 + \left( { - 2} \right) = 2} \right)$
$\because $Both are equal, hence the relationship is verified.
Now, product of zeroes is equal to $\frac{c}{a}$$\left( {\because c = - 8,a = 1} \right)$
Product of zeroes is $\left( {4 \times - 2 = - 8} \right)$same as $\frac{{ - c}}{a} = - 8$, both are equal hence verified.
$\left( {{\text{ii}}} \right)4{s^2} - 4s + 1 = 0$
To convert it in factor form we will write it as
$
4{s^2} - 2s - 2s + 1 = 0 \\
2s\left( {2s - 1} \right) - 1\left( {2s - 1} \right) = 0 \\
\left( {2s - 1} \right)\left( {2s - 1} \right) = 0 \\
$
Now this is a factor form so we can easily find $s$from here
$s = \frac{1}{2}$ here both zeroes are same that is $\frac{1}{2}$
Now we have to verify the relationship between zeroes and the coefficients.
Here $\frac{{ - b}}{a} = \frac{4}{4} = 1$and sum of zeroes is $\frac{1}{2} + \frac{1}{2} = 1$ both are equal hence verified.
Here $\frac{c}{a} = \frac{1}{4}$and product of zeroes is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$both are equal hence verified.
$\left( {{\text{iii}}} \right)6{x^2} - 3 - 7x = 0$
Now we have to convert it in factor form, so we will write it as
$
6{x^2} - 9x + 2x - 3 = 0 \\
3x\left( {2x - 3} \right) + 1\left( {2x - 3} \right) = 0 \\
\left( {2x - 3} \right)\left( {3x + 1} \right) = 0 \\
$
So $x = \frac{3}{2},x = \frac{{ - 1}}{3}$
Now we have to verify the relationship between zeroes and coefficients.
Here $\frac{{ - b}}{a} = \frac{7}{6}$and sum of zeroes $\frac{3}{2} + \frac{{ - 1}}{3} = \frac{7}{6}$both are equal hence verified.
Here $\frac{c}{a} = \frac{{ - 1}}{2}$and product of zeroes $\frac{3}{2} \times \frac{{ - 1}}{3} = \frac{{ - 1}}{2}$both are equal hence verified.
$\left( {{\text{iv}}} \right)4{u^2} + 8u = 0$
Now we have to convert it in factor form
$
4u\left( {u + 2} \right) = 0 \\
\therefore u = - 2,u = 0 \\
$
Here $\frac{{ - b}}{a} = - 2$and sum of zeroes is $ - 2 + 0 = - 2$both are the same hence verified.
Here $\frac{c}{a} = 0$and product of zeroes is $ - 2 \times 0 = 0$both are the same hence verified.
$\left( v \right){t^2} - 15 = 0$
We have to convert it in factor form
$
{t^2} - {\left( {\sqrt {15} } \right)^2} = 0 \\
\left( {t - \sqrt {15} } \right)\left( {t + \sqrt {15} } \right) = 0 \\
$
$t = \sqrt {15} ,t = \sqrt { - 15} $
Here $\frac{{ - b}}{a} = 0$ and sum of zeroes $\sqrt {15} - \sqrt {15} = 0$both are the same hence verified.
Here $\frac{c}{a} = - 15$and product of zeroes $\sqrt {15} \times \sqrt { - 15} = - 15$both are the same hence verified.
$\left( {{\text{vi}}} \right)3{x^2} - x - 4$
We will convert it in factor form
$
3{x^2} - x - 4 = 0 \\
3{x^2} - 4x + 3x - 4 = 0 \\
3x\left( {x + 1} \right) - 4\left( {x + 1} \right) = 0 \\
\left( {x + 1} \right)\left( {3x - 4} \right) = 0 \\
x = - 1,x = \frac{4}{3} \\
$
Here $\frac{{ - b}}{a} = \frac{1}{3}$and sum of zeroes $\frac{4}{3} - 1 = \frac{1}{3}$both are same hence verified.
Here $\frac{c}{a} = \frac{{ - 4}}{3}$and product of zeroes $\frac{4}{3} \times - 1 = \frac{{ - 4}}{3}$ both are same hence verified.
Note:-Whenever you get this type of question the key concept of solving is first you have to make a factor form using you basic mathematics and then using properties of quadratic equation you have to check sum of roots or zeros or product of roots with coefficients of polynomial.
$\left( {\text{i}} \right){x^2} - 2x - 8$
To convert in factor form we will write it as
$
{x^2} - 4x + 2x - 8 = 0 \\
x\left( {x - 4} \right) + 2\left( {x - 4} \right) = 0 \\
\left( {x - 4} \right)\left( {x + 2} \right) = 0 \\
$
Now this equation is in it’s factor form so,
$x = 4,x = - 2$
Now we have to verify the relationship between the zeroes and the coefficients.
Sum of zeroes is equal to $\frac{{ - b}}{a}$ on comparing with $a{x^2} + bx + c = 0$, we get $\left( {b = - 2,a = 1} \right)$
That means $\frac{{ - b}}{a} = 2$and sum of zeroes $\left( {4 + \left( { - 2} \right) = 2} \right)$
$\because $Both are equal, hence the relationship is verified.
Now, product of zeroes is equal to $\frac{c}{a}$$\left( {\because c = - 8,a = 1} \right)$
Product of zeroes is $\left( {4 \times - 2 = - 8} \right)$same as $\frac{{ - c}}{a} = - 8$, both are equal hence verified.
$\left( {{\text{ii}}} \right)4{s^2} - 4s + 1 = 0$
To convert it in factor form we will write it as
$
4{s^2} - 2s - 2s + 1 = 0 \\
2s\left( {2s - 1} \right) - 1\left( {2s - 1} \right) = 0 \\
\left( {2s - 1} \right)\left( {2s - 1} \right) = 0 \\
$
Now this is a factor form so we can easily find $s$from here
$s = \frac{1}{2}$ here both zeroes are same that is $\frac{1}{2}$
Now we have to verify the relationship between zeroes and the coefficients.
Here $\frac{{ - b}}{a} = \frac{4}{4} = 1$and sum of zeroes is $\frac{1}{2} + \frac{1}{2} = 1$ both are equal hence verified.
Here $\frac{c}{a} = \frac{1}{4}$and product of zeroes is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$both are equal hence verified.
$\left( {{\text{iii}}} \right)6{x^2} - 3 - 7x = 0$
Now we have to convert it in factor form, so we will write it as
$
6{x^2} - 9x + 2x - 3 = 0 \\
3x\left( {2x - 3} \right) + 1\left( {2x - 3} \right) = 0 \\
\left( {2x - 3} \right)\left( {3x + 1} \right) = 0 \\
$
So $x = \frac{3}{2},x = \frac{{ - 1}}{3}$
Now we have to verify the relationship between zeroes and coefficients.
Here $\frac{{ - b}}{a} = \frac{7}{6}$and sum of zeroes $\frac{3}{2} + \frac{{ - 1}}{3} = \frac{7}{6}$both are equal hence verified.
Here $\frac{c}{a} = \frac{{ - 1}}{2}$and product of zeroes $\frac{3}{2} \times \frac{{ - 1}}{3} = \frac{{ - 1}}{2}$both are equal hence verified.
$\left( {{\text{iv}}} \right)4{u^2} + 8u = 0$
Now we have to convert it in factor form
$
4u\left( {u + 2} \right) = 0 \\
\therefore u = - 2,u = 0 \\
$
Here $\frac{{ - b}}{a} = - 2$and sum of zeroes is $ - 2 + 0 = - 2$both are the same hence verified.
Here $\frac{c}{a} = 0$and product of zeroes is $ - 2 \times 0 = 0$both are the same hence verified.
$\left( v \right){t^2} - 15 = 0$
We have to convert it in factor form
$
{t^2} - {\left( {\sqrt {15} } \right)^2} = 0 \\
\left( {t - \sqrt {15} } \right)\left( {t + \sqrt {15} } \right) = 0 \\
$
$t = \sqrt {15} ,t = \sqrt { - 15} $
Here $\frac{{ - b}}{a} = 0$ and sum of zeroes $\sqrt {15} - \sqrt {15} = 0$both are the same hence verified.
Here $\frac{c}{a} = - 15$and product of zeroes $\sqrt {15} \times \sqrt { - 15} = - 15$both are the same hence verified.
$\left( {{\text{vi}}} \right)3{x^2} - x - 4$
We will convert it in factor form
$
3{x^2} - x - 4 = 0 \\
3{x^2} - 4x + 3x - 4 = 0 \\
3x\left( {x + 1} \right) - 4\left( {x + 1} \right) = 0 \\
\left( {x + 1} \right)\left( {3x - 4} \right) = 0 \\
x = - 1,x = \frac{4}{3} \\
$
Here $\frac{{ - b}}{a} = \frac{1}{3}$and sum of zeroes $\frac{4}{3} - 1 = \frac{1}{3}$both are same hence verified.
Here $\frac{c}{a} = \frac{{ - 4}}{3}$and product of zeroes $\frac{4}{3} \times - 1 = \frac{{ - 4}}{3}$ both are same hence verified.
Note:-Whenever you get this type of question the key concept of solving is first you have to make a factor form using you basic mathematics and then using properties of quadratic equation you have to check sum of roots or zeros or product of roots with coefficients of polynomial.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Write the main reasons for the stability of colloidal class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE