Answer
Verified
423.9k+ views
Hint: First, compare the given quadratic equation to the standard quadratic equation and find the value of numbers $a$, $b$ and $c$ in the given equation. Then, substitute the values of $a$, $b$ and $c$ in the formula of discriminant and find the discriminant of the given equation. Finally, put the values of $a$, $b$ and $D$ in the roots of the quadratic equation formula and get the desired result.
Formula used: The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
We know that an equation of the form $a{x^2} + bx + c = 0$, $a,b,c,x \in R$, is called a Real Quadratic Equation.
The numbers $a$, $b$ and $c$ are called the coefficients of the equation.
The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Next, compare $ - {x^2} - 5x - 35 = 0$ quadratic equation to standard quadratic equation and find the value of numbers $a$, $b$ and $c$.
Comparing $ - {x^2} - 5x - 35 = 0$ with $a{x^2} + bx + c = 0$, we get
$a = - 1$, $b = - 5$ and $c = - 35$
Now, substitute the values of $a$, $b$ and $c$ in $D = {b^2} - 4ac$ and find the discriminant of the given equation.
$D = {\left( { - 5} \right)^2} - 4\left( { - 1} \right)\left( { - 35} \right)$
After simplifying the result, we get
$ \Rightarrow D = 25 - 140$
$ \Rightarrow D = - 115$
Which means the given equation has no real roots or has imaginary roots.
Now putting the values of $a$, $b$ and $D$ in $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we get
$x = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {115} i}}{{2 \times \left( { - 1} \right)}}$
It can be written as
$ \Rightarrow x = - \dfrac{{5 \pm \sqrt {115} i}}{2}$
$ \Rightarrow x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$
So, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Note: We can check whether $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$ by putting the value of $x$ in given equation.
Putting $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} - \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} + \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Putting $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} + \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} - \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Formula used: The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
We know that an equation of the form $a{x^2} + bx + c = 0$, $a,b,c,x \in R$, is called a Real Quadratic Equation.
The numbers $a$, $b$ and $c$ are called the coefficients of the equation.
The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Next, compare $ - {x^2} - 5x - 35 = 0$ quadratic equation to standard quadratic equation and find the value of numbers $a$, $b$ and $c$.
Comparing $ - {x^2} - 5x - 35 = 0$ with $a{x^2} + bx + c = 0$, we get
$a = - 1$, $b = - 5$ and $c = - 35$
Now, substitute the values of $a$, $b$ and $c$ in $D = {b^2} - 4ac$ and find the discriminant of the given equation.
$D = {\left( { - 5} \right)^2} - 4\left( { - 1} \right)\left( { - 35} \right)$
After simplifying the result, we get
$ \Rightarrow D = 25 - 140$
$ \Rightarrow D = - 115$
Which means the given equation has no real roots or has imaginary roots.
Now putting the values of $a$, $b$ and $D$ in $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we get
$x = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {115} i}}{{2 \times \left( { - 1} \right)}}$
It can be written as
$ \Rightarrow x = - \dfrac{{5 \pm \sqrt {115} i}}{2}$
$ \Rightarrow x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$
So, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Note: We can check whether $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$ by putting the value of $x$ in given equation.
Putting $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} - \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} + \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Putting $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} + \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} - \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE