Answer
Verified
494.4k+ views
Hint: Two consecutive numbers differ by 1. Hence if one of them is n, the other one is n+1. So, let the numbers be n,n+1. Form a quadratic in n and solve for n. Hence find the numbers. Check for extraneous roots. Verify your solution.
Complete step-by-step answer:
Let the numbers be n and n+1.
Now the sum of squares of the numbers $={{n}^{2}}+{{\left( n+1 \right)}^{2}}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
The sum of the squares of the numbers
$\begin{align}
& ={{n}^{2}}+{{n}^{2}}+2n+1 \\
& =2{{n}^{2}}+2n+1 \\
\end{align}$
Given that the sum of the squares is 265.
Hence, we have
$2{{n}^{2}}+2n+1=265$
Subtracting 265 from both sides, we get
$\begin{align}
& 2{{n}^{2}}+2n+1-265=265-265 \\
& \Rightarrow 2{{n}^{2}}+2n-264=0 \\
\end{align}$
Dividing both sides by 2, we get
$\begin{align}
& \dfrac{2{{n}^{2}}+2n-264}{2}=\dfrac{0}{2} \\
& \Rightarrow {{n}^{2}}+n-132=0 \\
\end{align}$
We solve using splitting the middle term method.
We have $11\times 12=132$ and $12-11=1$
Hence, we have
${{n}^{2}}+n-132={{n}^{2}}+12n-11n-132$
Taking n common from first two terms and 11 common from last two terms, we get
${{n}^{2}}+n-132=n\left( n+12 \right)-11\left( n+12 \right)$
Taking n+12 common from both the terms, we get
${{n}^{2}}+n-132=\left( n+12 \right)\left( n-11 \right)$
Hence we have
$\begin{align}
& {{n}^{2}}+n-132=0 \\
& \Rightarrow \left( n+12 \right)\left( n-11 \right)=0 \\
\end{align}$
If ab = 0 then a =0 or b = 0 (zero product property).
Hence, we have
$\begin{align}
& n+12=0\text{ or }n-11=0 \\
& \Rightarrow n=-12\text{ or }n=11 \\
\end{align}$
Since n is a natural number, we have n>0.
Hence n =-12 is rejected
Hence n = 11.
Hence the numbers are 11 and 12.
Hence option [b] is correct.
Note: [1] Do not forget to delete the root n =-12 as it would give non-natural number solutions
[2] You can also use the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$, which gives the roots of the quadratic $a{{x}^{2}}+bx+c=0$. Compare to get the value of a, b and c.
[3] Verification: $11\in \mathbb{N},12\in \mathbb{N},{{11}^{2}}+{{12}^{2}}=121+144=265$ and 11 and 12 are consecutive. Hence the solution is correct.
Complete step-by-step answer:
Let the numbers be n and n+1.
Now the sum of squares of the numbers $={{n}^{2}}+{{\left( n+1 \right)}^{2}}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
The sum of the squares of the numbers
$\begin{align}
& ={{n}^{2}}+{{n}^{2}}+2n+1 \\
& =2{{n}^{2}}+2n+1 \\
\end{align}$
Given that the sum of the squares is 265.
Hence, we have
$2{{n}^{2}}+2n+1=265$
Subtracting 265 from both sides, we get
$\begin{align}
& 2{{n}^{2}}+2n+1-265=265-265 \\
& \Rightarrow 2{{n}^{2}}+2n-264=0 \\
\end{align}$
Dividing both sides by 2, we get
$\begin{align}
& \dfrac{2{{n}^{2}}+2n-264}{2}=\dfrac{0}{2} \\
& \Rightarrow {{n}^{2}}+n-132=0 \\
\end{align}$
We solve using splitting the middle term method.
We have $11\times 12=132$ and $12-11=1$
Hence, we have
${{n}^{2}}+n-132={{n}^{2}}+12n-11n-132$
Taking n common from first two terms and 11 common from last two terms, we get
${{n}^{2}}+n-132=n\left( n+12 \right)-11\left( n+12 \right)$
Taking n+12 common from both the terms, we get
${{n}^{2}}+n-132=\left( n+12 \right)\left( n-11 \right)$
Hence we have
$\begin{align}
& {{n}^{2}}+n-132=0 \\
& \Rightarrow \left( n+12 \right)\left( n-11 \right)=0 \\
\end{align}$
If ab = 0 then a =0 or b = 0 (zero product property).
Hence, we have
$\begin{align}
& n+12=0\text{ or }n-11=0 \\
& \Rightarrow n=-12\text{ or }n=11 \\
\end{align}$
Since n is a natural number, we have n>0.
Hence n =-12 is rejected
Hence n = 11.
Hence the numbers are 11 and 12.
Hence option [b] is correct.
Note: [1] Do not forget to delete the root n =-12 as it would give non-natural number solutions
[2] You can also use the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$, which gives the roots of the quadratic $a{{x}^{2}}+bx+c=0$. Compare to get the value of a, b and c.
[3] Verification: $11\in \mathbb{N},12\in \mathbb{N},{{11}^{2}}+{{12}^{2}}=121+144=265$ and 11 and 12 are consecutive. Hence the solution is correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE