Answer
Verified
499.5k+ views
Hint: Convert the mixed fraction $1\dfrac{10}{63}$ to complete the fraction form. Assume the numerators in two fractions and use 7 and 9 as denominators, then use LCM to find out the two fractions.
According to the question, we have to add two fractions with denominators 7 and 9, such that the result is \[1\dfrac{10}{63}\].
First lets convert the mixed fraction into proper fraction form, i.e.,
$1\dfrac{10}{63}=\dfrac{63\times 1+10}{63}$
$1\dfrac{10}{63}=\dfrac{73}{63}..........\left( 1 \right)$
Now, let the first number be $\dfrac{n}{7}$ and the second number be $\dfrac{m}{9}.$
Now as per given condition, the sum of these two fraction is equal to \[1\dfrac{10}{63}\], i.e.,
$\dfrac{n}{7}+\dfrac{m}{9}=1\dfrac{10}{63}$
Using LCM rule, $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+cb}{bd}$, the above equation can be written as,
\[\dfrac{9n+7m}{63}=1\dfrac{10}{63}\]
Substituting value from equation (1), we get
$\dfrac{9n+7m}{63}=\dfrac{73}{63}$
Cancelling the like terms, we get
$9n+7m=73...........(2)$
Now, n and m are both natural numbers greater than zero, i.e., they cannot be decimal numbers. Since, if n or m is zero then fraction won’t exist.
Now let n = 1, then substituting this value in equation (2), we get
$\begin{align}
& 9(1)+7m=73 \\
& \Rightarrow 7m=73-9 \\
& \Rightarrow m=\dfrac{64}{7} \\
\end{align}$
This is not a natural number.
So, let n = 2, then substituting this value in equation (2), we get
$\begin{align}
& 9(2)+7m=73 \\
& \Rightarrow 7m=73-18 \\
& \Rightarrow m=\dfrac{55}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 3, then substituting this value in equation (2), we get
$\begin{align}
& 9(3)+7m=73 \\
& \Rightarrow 7m=73-27 \\
& \Rightarrow m=\dfrac{46}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 4, then substituting this value in equation (2), we get
$\begin{align}
& 9(4)+7m=73 \\
& \Rightarrow 7m=73-36 \\
& \Rightarrow m=\dfrac{37}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 5, then substituting this value in equation (2), we get
$\begin{align}
& 9(5)+7m=73 \\
& \Rightarrow 7m=73-45 \\
& \Rightarrow m=\dfrac{28}{7}=4 \\
\end{align}$
This is a natural number.
Hence we get m = 4, n = 5 as the values of the numerator.
Therefore, the two required fractions are $\dfrac{5}{7}$ and $\dfrac{4}{9}.$
Note: We can verify our answer,
$\dfrac{5}{7}+\dfrac{4}{9}=\dfrac{5\times 9\times 4\times 7}{63}=\dfrac{45+28}{63}=\dfrac{73}{63}=1\dfrac{10}{63}$
Hence, we are right.
Also, an alternate method is to right $m=\dfrac{1}{7}\left[ 73-9n \right]$ using equation (2) and then use trial and error method.
According to the question, we have to add two fractions with denominators 7 and 9, such that the result is \[1\dfrac{10}{63}\].
First lets convert the mixed fraction into proper fraction form, i.e.,
$1\dfrac{10}{63}=\dfrac{63\times 1+10}{63}$
$1\dfrac{10}{63}=\dfrac{73}{63}..........\left( 1 \right)$
Now, let the first number be $\dfrac{n}{7}$ and the second number be $\dfrac{m}{9}.$
Now as per given condition, the sum of these two fraction is equal to \[1\dfrac{10}{63}\], i.e.,
$\dfrac{n}{7}+\dfrac{m}{9}=1\dfrac{10}{63}$
Using LCM rule, $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+cb}{bd}$, the above equation can be written as,
\[\dfrac{9n+7m}{63}=1\dfrac{10}{63}\]
Substituting value from equation (1), we get
$\dfrac{9n+7m}{63}=\dfrac{73}{63}$
Cancelling the like terms, we get
$9n+7m=73...........(2)$
Now, n and m are both natural numbers greater than zero, i.e., they cannot be decimal numbers. Since, if n or m is zero then fraction won’t exist.
Now let n = 1, then substituting this value in equation (2), we get
$\begin{align}
& 9(1)+7m=73 \\
& \Rightarrow 7m=73-9 \\
& \Rightarrow m=\dfrac{64}{7} \\
\end{align}$
This is not a natural number.
So, let n = 2, then substituting this value in equation (2), we get
$\begin{align}
& 9(2)+7m=73 \\
& \Rightarrow 7m=73-18 \\
& \Rightarrow m=\dfrac{55}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 3, then substituting this value in equation (2), we get
$\begin{align}
& 9(3)+7m=73 \\
& \Rightarrow 7m=73-27 \\
& \Rightarrow m=\dfrac{46}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 4, then substituting this value in equation (2), we get
$\begin{align}
& 9(4)+7m=73 \\
& \Rightarrow 7m=73-36 \\
& \Rightarrow m=\dfrac{37}{7} \\
\end{align}$
This is also not a natural number.
So, let n = 5, then substituting this value in equation (2), we get
$\begin{align}
& 9(5)+7m=73 \\
& \Rightarrow 7m=73-45 \\
& \Rightarrow m=\dfrac{28}{7}=4 \\
\end{align}$
This is a natural number.
Hence we get m = 4, n = 5 as the values of the numerator.
Therefore, the two required fractions are $\dfrac{5}{7}$ and $\dfrac{4}{9}.$
Note: We can verify our answer,
$\dfrac{5}{7}+\dfrac{4}{9}=\dfrac{5\times 9\times 4\times 7}{63}=\dfrac{45+28}{63}=\dfrac{73}{63}=1\dfrac{10}{63}$
Hence, we are right.
Also, an alternate method is to right $m=\dfrac{1}{7}\left[ 73-9n \right]$ using equation (2) and then use trial and error method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE