Answer
Verified
433.8k+ views
Hint: We explain the central angle around a point. Then we discuss the algebraic and geometric versions of the quadrants. We also find different quadrants and their characteristics. Then we find the solutions for the angles $0 < a < \dfrac{\pi }{2}$ and $\dfrac{3\pi }{2} < a < 2\pi $.
Complete step by step answer:
The central angle around a point is always equal to ${{360}^{\circ }}$.
The total angle is divided into four parts or quadrant as they are called. These quadrants are named in roman numerals of $I,II,III,IV$.
In case of algebraic sense these quadrants give the signs of the x and y coordinates.
These quadrants are also called as the first, second, third and fourth quadrant.
The respective signs for the coordinates of $\left( x,y \right)$ will be \[\left( +,+ \right),\left( -,+ \right),\left( -,- \right),\left( +,- \right)\] respectively for the quadrants.
Now we look for the geometric side of the quadrants where we deal with the angle of the trigonometric ratios.
The total circular angle of $2\pi $ can be divided into four parts. Each part is of $\dfrac{\pi }{2}$.
Therefore, the first quadrant is the interval of $\left( 0,\dfrac{\pi }{2} \right)$. The second quadrant is the interval of $\left( \dfrac{\pi }{2},\pi \right)$. The third quadrant is the interval of $\left( \pi ,\dfrac{3\pi }{2} \right)$. The fourth quadrant is the interval of $\left( \dfrac{3\pi }{2},2\pi \right)$. The $0,\dfrac{\pi }{2},\pi ,\dfrac{3\pi }{2}$ indicates the axes.
Now we find for the quadrants $0 < a < \dfrac{\pi }{2}$ and $\dfrac{3\pi }{2} < a < 2\pi $.
When the angle $0 < a < \dfrac{\pi }{2}$, the quadrant is first and when the angle $\dfrac{3\pi }{2} < a < 2\pi $, the quadrant is fourth.
Note:
We can also represent the quadrants with respect to the image form of both algebraic and geometric versions.
The rotation of the coordinates happens anti-clockwise.
Complete step by step answer:
The central angle around a point is always equal to ${{360}^{\circ }}$.
The total angle is divided into four parts or quadrant as they are called. These quadrants are named in roman numerals of $I,II,III,IV$.
In case of algebraic sense these quadrants give the signs of the x and y coordinates.
These quadrants are also called as the first, second, third and fourth quadrant.
The respective signs for the coordinates of $\left( x,y \right)$ will be \[\left( +,+ \right),\left( -,+ \right),\left( -,- \right),\left( +,- \right)\] respectively for the quadrants.
Now we look for the geometric side of the quadrants where we deal with the angle of the trigonometric ratios.
The total circular angle of $2\pi $ can be divided into four parts. Each part is of $\dfrac{\pi }{2}$.
Therefore, the first quadrant is the interval of $\left( 0,\dfrac{\pi }{2} \right)$. The second quadrant is the interval of $\left( \dfrac{\pi }{2},\pi \right)$. The third quadrant is the interval of $\left( \pi ,\dfrac{3\pi }{2} \right)$. The fourth quadrant is the interval of $\left( \dfrac{3\pi }{2},2\pi \right)$. The $0,\dfrac{\pi }{2},\pi ,\dfrac{3\pi }{2}$ indicates the axes.
Now we find for the quadrants $0 < a < \dfrac{\pi }{2}$ and $\dfrac{3\pi }{2} < a < 2\pi $.
When the angle $0 < a < \dfrac{\pi }{2}$, the quadrant is first and when the angle $\dfrac{3\pi }{2} < a < 2\pi $, the quadrant is fourth.
Note:
We can also represent the quadrants with respect to the image form of both algebraic and geometric versions.
The rotation of the coordinates happens anti-clockwise.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE