
For 2s orbital, the nodal surface at a distance of:
A. \[{a_0}\] from the nucleus
B. \[1.5{a_0}\] from the nucleus
C. \[2{a_0}\] from the nucleus
D. none of these
Answer
557.1k+ views
Hint: Nodal surface is the region where the probability of finding an electron is zero.
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius
r-distance from the nucleus
Complete step by step answer:
As we know that Node is the region where the probability of finding an electron is zero. Nodes have two types as radial and angular nodes. Angular node is the plane that contains the x-,y- and z-axis where its probability of finding an electron is zero. Angular nodes can be identified by their azimuthal quantum number. For s-orbital there are no angular nodes since its azimuthal quantum number is 0.
The nodal surface which is radial nodes can be calculated by the formula \[n - l - 1\]
Where,
n-principal quantum number. For 2s orbital, \[n = 2\]
l- azimuthal quantum number. For s-orbital, \[l = 0\]
thus, the number of radial nodes for 2s-subshell\[ = 2 - 0 - 1 \Rightarrow 1\]
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius(distance)
r-distance from the nucleus
At the nodal surface,\[\varphi (2s) = 0\]. So when \[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\], then the whole wave function for 2s- subshell becomes zero.
Thus, for 2s-subshell,
\[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\]
\[ \Rightarrow 2 = \dfrac{r}{{{a_0}}}\]
\[ \Rightarrow r = 2{a_0}\]
Thus, for 2s orbital, the nodal surface is at a distance of \[2{a_0}\] from the nucleus.
So, the correct answer is Option C.
Note: At the nodal surface, the wave function will become zero since electron density is zero on the nodal surface. The radial node is the spherical surface at which the probability of finding an electron is zero.
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius
r-distance from the nucleus
Complete step by step answer:
As we know that Node is the region where the probability of finding an electron is zero. Nodes have two types as radial and angular nodes. Angular node is the plane that contains the x-,y- and z-axis where its probability of finding an electron is zero. Angular nodes can be identified by their azimuthal quantum number. For s-orbital there are no angular nodes since its azimuthal quantum number is 0.
The nodal surface which is radial nodes can be calculated by the formula \[n - l - 1\]
Where,
n-principal quantum number. For 2s orbital, \[n = 2\]
l- azimuthal quantum number. For s-orbital, \[l = 0\]
thus, the number of radial nodes for 2s-subshell\[ = 2 - 0 - 1 \Rightarrow 1\]
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius(distance)
r-distance from the nucleus
At the nodal surface,\[\varphi (2s) = 0\]. So when \[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\], then the whole wave function for 2s- subshell becomes zero.
Thus, for 2s-subshell,
\[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\]
\[ \Rightarrow 2 = \dfrac{r}{{{a_0}}}\]
\[ \Rightarrow r = 2{a_0}\]
Thus, for 2s orbital, the nodal surface is at a distance of \[2{a_0}\] from the nucleus.
So, the correct answer is Option C.
Note: At the nodal surface, the wave function will become zero since electron density is zero on the nodal surface. The radial node is the spherical surface at which the probability of finding an electron is zero.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

