For a second order, the graph plotted between ${{[A]}^{-1}}$and time ‘t’ is shown here. $\theta ={{\tan }^{-1}}(0.5)$ and OP = $2Lmo{{l}^{-1}}$. Thus, rate of the reaction at start is:
A.$125\,Lmo{{l}^{-1}}{{\min }^{-1}}$
B.$0.124\,Lmo{{l}^{-1}}{{\min }^{-1}}$
C.$1.25\,mol\,Lmo{{l}^{-1}}{{\min }^{-1}}$
D.$0.5\,mol\,Lmo{{l}^{-1}}{{\min }^{-1}}$
Answer
Verified
417.3k+ views
Hint: The reaction in which the concentration of the species that are reacting is raised to the power of two is the second order reaction. Rate constant of any reaction is the relationship between concentration of the reactants and the rate. Rate constant of the second order reaction has unit $mo{{l}^{-1}}L{{\sec }^{-1}}$.
Complete answer:
We have been given a graph plotted between $\dfrac{1}{[A]}$ and time ‘t’. It is a second order reaction. We have to determine the rate of the reaction at the start.
So, For this second order reaction (involving one reactant A), the equation will be $2A\to products$. Applying the law of mass action, the rate of this reaction will be, $\dfrac{dx}{dt}\propto {{[A]}^{2}}$
So, changing the proportionality with rate constant k, we have,
$\dfrac{dx}{dt}=k{{[A]}^{2}}$, this equation can be rewritten as,
$\dfrac{dx}{{{[A]}^{2}}}=kdt$
Integrating the above equation we have,
$\int{\dfrac{dx}{{{[A]}^{2}}}=\int{kdt}}$ this will be,
$\dfrac{{{[A]}^{-1}}}{-1}\times (-1)=kt+I$
$\dfrac{1}{{{[A]}^{-1}}}=kt+I$ , where $I$ is the constant of integration. In the beginning, time, t = 0, and the reactant will be A only, as it has not been reacted.
This equation resembles the equation of a line, slope- intercept form, which is y = mx + b, where m is the slope, x is the x coordinate, y is the y coordinate, and b is the y intercept.
The second order reaction has led to $\dfrac{1}{{{[A]}^{-1}}}=kt+I$, from which it is clear that the slope of the graph gives us rate constant, while y coordinate gives $\dfrac{1}{[A]}$and x coordinate time, ‘t’. so, the slope of the straight line which is $\tan \theta $ will give us the rate. As given, $\theta ={{\tan }^{-1}}=0.5$, this will be the rate of the reaction.
Hence, the rate of the reaction at the start is $0.5\,mol\,Lmo{{l}^{-1}}{{\min }^{-1}}$, so option D is correct.
Note:
The derivation explained is the integrated form of rate equation, rate equation states that rate is directly proportional to the concentration of reactants. Through the integration of rate equation for second order reaction, we can obtain the slope- intercept form equation, which can tell us the value of rate constant, which is the slope of the graph between concentration and time.
Complete answer:
We have been given a graph plotted between $\dfrac{1}{[A]}$ and time ‘t’. It is a second order reaction. We have to determine the rate of the reaction at the start.
So, For this second order reaction (involving one reactant A), the equation will be $2A\to products$. Applying the law of mass action, the rate of this reaction will be, $\dfrac{dx}{dt}\propto {{[A]}^{2}}$
So, changing the proportionality with rate constant k, we have,
$\dfrac{dx}{dt}=k{{[A]}^{2}}$, this equation can be rewritten as,
$\dfrac{dx}{{{[A]}^{2}}}=kdt$
Integrating the above equation we have,
$\int{\dfrac{dx}{{{[A]}^{2}}}=\int{kdt}}$ this will be,
$\dfrac{{{[A]}^{-1}}}{-1}\times (-1)=kt+I$
$\dfrac{1}{{{[A]}^{-1}}}=kt+I$ , where $I$ is the constant of integration. In the beginning, time, t = 0, and the reactant will be A only, as it has not been reacted.
This equation resembles the equation of a line, slope- intercept form, which is y = mx + b, where m is the slope, x is the x coordinate, y is the y coordinate, and b is the y intercept.
The second order reaction has led to $\dfrac{1}{{{[A]}^{-1}}}=kt+I$, from which it is clear that the slope of the graph gives us rate constant, while y coordinate gives $\dfrac{1}{[A]}$and x coordinate time, ‘t’. so, the slope of the straight line which is $\tan \theta $ will give us the rate. As given, $\theta ={{\tan }^{-1}}=0.5$, this will be the rate of the reaction.
Hence, the rate of the reaction at the start is $0.5\,mol\,Lmo{{l}^{-1}}{{\min }^{-1}}$, so option D is correct.
Note:
The derivation explained is the integrated form of rate equation, rate equation states that rate is directly proportional to the concentration of reactants. Through the integration of rate equation for second order reaction, we can obtain the slope- intercept form equation, which can tell us the value of rate constant, which is the slope of the graph between concentration and time.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What is the chemical name of Iron class 11 chemistry CBSE
Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE