Answer
Verified
470.4k+ views
Hint:If the values of variables $x$ are ${x_1},{x_2},{x_3},.....,{x_n}$, where $'n'$ is the total number of values, then
Arithmetic mean $\left( {\overline x } \right)$
$\begin{gathered}
= \dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^{i = n} {{x_i}} \\
\\
\end{gathered} $
The symbol $\sum\limits_{i = 1}^{i = n} {{x_i}} $, denotes the sum ${x_1} + {x_2} + {x_3} + ..... + {x_n}.$
The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
Complete step-by-step answer:
Let the total number of observations are ‘n’ and given, the mean of observation be $'x'$.
Then,
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx........(i) \\
\end{gathered} $
Then,
$\begin{gathered}
\sum {\left( {x - \overline x } \right)} = \left[ {\left( {{x_1} - x} \right) + \left( {{x_2} - x} \right) + \left( {{x_3} - x} \right) + ...... + \left( {{x_n} - x} \right)} \right] \\
{\text{ = }}\left[ {\left( {{x_1} + {x_1} + {x_1} + ...... + {x_1}} \right) - \left( {x + x + x + .....n{\text{ times}}} \right)} \right] \\
\end{gathered} $
Since, from $\left( i \right)$ above, we have
${x_1} + {x_2} + {x_3} + ..... + {x_n} = nx$ and $x + x + x + ....... + x = nx$
Therefore,
$\sum {\left( {x - \overline x } \right)} = nx - nx = 0$
So, the correct answer is “Option D”.
Note:The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx \\
\end{gathered} $
And also,
$x + x + x + ....... + x = nx$.
Arithmetic mean $\left( {\overline x } \right)$
$\begin{gathered}
= \dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^{i = n} {{x_i}} \\
\\
\end{gathered} $
The symbol $\sum\limits_{i = 1}^{i = n} {{x_i}} $, denotes the sum ${x_1} + {x_2} + {x_3} + ..... + {x_n}.$
The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
Complete step-by-step answer:
Let the total number of observations are ‘n’ and given, the mean of observation be $'x'$.
Then,
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx........(i) \\
\end{gathered} $
Then,
$\begin{gathered}
\sum {\left( {x - \overline x } \right)} = \left[ {\left( {{x_1} - x} \right) + \left( {{x_2} - x} \right) + \left( {{x_3} - x} \right) + ...... + \left( {{x_n} - x} \right)} \right] \\
{\text{ = }}\left[ {\left( {{x_1} + {x_1} + {x_1} + ...... + {x_1}} \right) - \left( {x + x + x + .....n{\text{ times}}} \right)} \right] \\
\end{gathered} $
Since, from $\left( i \right)$ above, we have
${x_1} + {x_2} + {x_3} + ..... + {x_n} = nx$ and $x + x + x + ....... + x = nx$
Therefore,
$\sum {\left( {x - \overline x } \right)} = nx - nx = 0$
So, the correct answer is “Option D”.
Note:The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx \\
\end{gathered} $
And also,
$x + x + x + ....... + x = nx$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE