
For complex numbers z and w, prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$, if and only if $z=w\ or\ z\overline{w}=1$.
Answer
601.8k+ views
Hint: We will be using the concept of complex numbers to solve the problem. We will be using the concept that modulus of a complex number ${{\left| z \right|}^{2}}=z\overline{z}$. Also if a complex number is real then $z=\overline{z}$.
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

